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PHELIX Laser and LIGHT Project.
Injector for Accelerators.
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> Limitations of conventional accelerator technology mean that kilometer-sized

accelerators are required for high energy particles.

» The accelerating field gradient of laser protons has at least four order of

magnitude larger than of conventional accelerator (TV/m in compare with MV/m).

LARGE AND SMALL: (Left) Conventional accelerator at CERN. (Center) Part of the linear accelerator
beamline. (Right) Benchtop laser particle accelerator for multi- MeV experiments.
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Laser-Plasma Interaction
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> Acceleration mechanisms depend on different conditions:

= Laser pulse: intensity, energy, per-pulse, polarization, pulse duration....

= Target properties: density, thickness, mass....

[ If the electrons are dominated by a Thermal Spectrum, they will expand in vacuum resulting
in a huge accelerating field

Target Normal Sheath Acceleration mechanism (TINSA)

Q If the thermal electrons are suppressed, an accelerating field is induced by the balance
between light pressure and electrostatic force

Radiation Pressure Acceleration mechanism (RPA)
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Laser-accelerated ion beams have unique characteristics compared to”~
conventional accelerators

Benefits: Challenges:

* Large accelerating fields * High divergence.
TV/m vs. MV/m

> Short acceleration distance
~ 10pm vs. ~ 100m

* Broad energy spectrum.
* Low repetition rate.

« Short initial pulse duration * Poor controlled particle energy.

< ps vs.>ns

» Small initial longitudinal emittance
1peVs vs. 1eVs (CERN SPS)

e Small initial fransverse emittance
< 0.1 mm-mrad vs. 1 mmm-mrad (CERN SPS)

v' For special application Laser accelerated ions could be an alternative
for conventional
Ion source - RFQ - DTL front end

7 Ali Almomani, IAP- Frankfurt University
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PHELIX: Petawatt High - Energy Laser for Heavy - Ton eXperiments.”

0 PHELIX has been completed in 2008.

0 Two Options:
> Long pulse mode: pulse of length from 0.7 - 20 ns with kJ energy.

» Short pulse mode: pulse of length 0.7 - 20 ps with energy up to 120J.
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intensity

Rep. rate at
max power
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Characteristics of Laser-accelerated protons G+ VTEHREQ&

Large number of expriments have been performed to study the dependance of the

accelerated ion properties on the laser parameters (rare side acceleration).
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Transfer line

to SIS 18 Project Report

"LIGHT - Laser Ion Generation, Handling and Transport"
Post-acceleration
/ structure (CH-DTL)

Target chamber
/ Rebuncher :’" beam
o cavity / lagnostic

4 UNILAC  Target chamber Compressor

Collaboration Partners:

= TU- Darmstadt

= GSI

= TAP- Frankfurt

» Helmholtz-Institute Jena
» FZ- Dresden

= EMMI

> Expected laser parameters:
= Beam diameter: 12 cm

= wavelength: 1053 nm

= pulse duration: 500 fs

= Pulse energy: 50 J

Repetition rate: 1 shot/60 min
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= Tnvestigate the physics of proton (ion) generation by ultra-intense laser.

= Collimate the proton beam by a solenoid and transport into bunch rotation cavity.
= Post-acceleration by a CH - DTL.

= Analyze 6D phase space distribution and beam ftransmission.

= Correlation between energy distribution and transverse divergence.

= Optimize laser and target configurations, target solenoid stand-off distance.

= Check of the reproducibility of the beam parameters

= Interaction with intense B- field, context of early de-neutralization and space

charge effects.

12 Ali Almomani, IAP- Frankfurt University
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Finished

Experimental
Phase 2 commissioning; 02/2012

= Post acceleration cavity of generated protons with a conventional accelerator, CH- DTL.
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» The coupling between laser accelerated protons with conventional DTL for
further acceleration seems possible.
» This hybrid will benefit from the unique characteristics of the laser accelerated

proton source and from the flexibility of RF based accelerator structure.

Laser- Focusing Accelerating
accelerated > section > section
proton source (Solenoid) (CH-DTL)

Scheme of the hybrid accelerator

0 Motivation:
=Single Bunch generation; Small emittances and extremely high particle number.

O Advantage:
= Beam parameters and quality are comparable or better
= Smaller size and easier o operate.

0 Open Question:
= Phase Space Matching [Longitudinally and Transversely].
= Repetition Rate; determine by laser (PHELIX: 1 shot per 60 min).

14 Ali Almomani, IAP- Frankfurt University



Typical Experimental Setup
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Proton Diagnostic with Radiochromic Films
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HD-810

Density Composition
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Radiochromic film (RCF) is a dosimetry medium which is sensitive to ionising radiation.

Stacks of RCFs may be employed to detect and measure the characteristics of laser-

driven proton beams.

More energetic protons will penetrate to greater depths in the film pack, hence spectral
information can be gleaned from RCF data.

Since the bulk of proton energy deposition occurs in the region around the Bragg peak,
different layers in the RCF stack can be assignhed different energies.

Deposited energy per proton (keV/um)
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v' Stacks of RCFs may be employed to gty g far e g
detect and measure the characteristics . . . =
of laser-driven proton beams.
- — — vy

v" By knowing the size of proton beam in
RCF and the distance between target
and detector, the envelope divergence
can be determined.

Stack configuration: )
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O For small proton energies the angle
of beam spread in nearly constant.
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0 BUT for increasing energy the angle
decreases approximately linear.

Half envelope divergence (°)

20 25
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The proton energy in RCF is known from the Bragg peak, which is determine from
the losing kinetic (deposited) energy curve.
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Expanding proton beam
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Phase Space Matching DETIVEIE = F e

= Strongly angular divergent with energy dependent (up £25°);

requires strong focusing pulsed solenoid (B > 18T).

= Geometric aberration.

= An exponential particle spectrum with an energy spread of 100%.

= Chromatic aberration.
= Small part of energy spectrum can use classical accelerators.

= Short bunch length (<Ips); Small phase spread < 0. degree.
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Simulation Strategy coETHE_3X
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Generation of Particle Distribution
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Proton distribution (per 100 keV)
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In TNSA process, the protons are expected to be space charge neutralized to a high
degree with the co-moving electrons.
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Gaussian distribution in x,x" and x,y.

2o radius dependent on energy.

Isothermal in energy.

Data from F.Nirnberg thesis.

107 Macroparticles (electrons and protons).

250000 Macroparticles for protons in 10 + 0.5MeV.

Over all energy range 5-15MeV.
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= Due to magnetic field, the charge separation leads to a negative on axis potential.
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0 1
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g | g
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t=40.0 ps -40000 + t=40.0 ps

6 1 ' 3 -+ . -0.4 0.0 0.4
z (mm) r (mm)
=  Minimum electric potential on axis of about - 40kV.

=10000 = The potential is reaching almost constant along z -
-20000 1 axis within the bunch at t = 40ps.
-30000 ; = An initial plasma oscillation is almost damped at
40000 - t = 40 ps.

5 0.6 0.7 0

0 8
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= The electrons start to escape and accelerated to high energies in both z-directions.

(OETHE

Tracking through the Solenoid
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The central part of proton distribution (r<|500um|) is strongly focused.
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Up to t = 3.4 ns corresponds to z = |5 cm center of bunch GOETH E
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= Due to space charge relaxing, the influence of co-moving electrons can be neglected.

‘ : ‘ 04
20 10 + 0.5 MeV ] | 10+ 0.5 MeV

0.09  0.11 013 015 0.17 0.19 -2.0 -1.0 0.0 1.0 2.0
z (m) X (cm)

= The selected energy band 10+0.5 MeV will be injected into the CH-DTL.
= A maximum potential on axis of +14 kV was reached at position z = 11 cm, while its level
for the energy of interest 10 MeV, z # 15 cm was reached +4 kV.

= The simulation with LASIN ends at this point, and the proton distribution was adapted
as input dist. for CH - DTL.

28 Ali Almomani, IAP- Frankfurt University
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Design for a Dedicated CH — DTL
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Table 1: Normalized rms- emittance values for
the input and output distribution with 500 mA
beam current.

Emittance Input Output
Transverse/ x: 3.85 4.08
mm - mrad y:3.85 4.06
Longitudinal/

5.37 6.68

keV - ns

—e— x-X'

Norm. rel. rms emittance growth

Beam axis (m)

Energy spread (keV)

£, (mm mrad) = 19.58 [95%)]

-10 0 10
X (mm), Input

Transversal particle distribution

g, (keV ns) = 27.03 [95%)]
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Beam Dynamics
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Laser accelerated proton case

Table 2: Normalized rms- emittance values for the input and output distribution

for the laser accelerated case.
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Beam Dynamics GOETHE_3
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Particle Distribution

Transversal particle distributions at 40
the entrance and exist of CH-DTL = 2
g o
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Longitudinal particle distribution at
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&, (mm mrad) = 19.25 [95%)]
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g, (keV ns) = 35.09 [95%)]

Phase spread, Output (deg)
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* The high acceleration gradient is not only needed to accelerate to high energy but also
to prevent the beam losses.
* Two cases are compared (AE = £ 0.5 MeV):
- Acceleration from 10 — 40 MeV within 4.92 m length.
- Acceleration from 10 — 25 MeV within 4.54 m length (50% reduction).
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Table 3: A comparison between different accelerating gradient cases in terms of the| T T
transmission and normalized rel. rms emittance growth at different beam current.
Current (A) Acc. gradient Transmission (%) Norm. rel. rms emittance
growth
v, 100.0 1.16
0.0
0.5V, 100.0 1.15
v, 100.0 1.23
0.5
0.5V, 99.8 1.69
v, 100.0 1.32
1.0
0.5V, 98.5 2.12

For the 1st case where the accelerating gradient was V, resulting 100% transmissions up to
1 A. While in 2" case, 100 % transmission is valid up to 400 mA only. Beyond this point, the
Transmission starts to decrease with increasing beam current.

The emittance growth shows quite different between I/,and 0.5V, case.
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= One great advantage of high current, single bunch passage along the cavity is that the
amplifier only has to provide the loss power in the cavity walls.

2
_ Pioss Qo Poes = (NGTfUO)
W Zesr L
2-A-W
QBunch = T - Uy - Ng

w

For the first cavity of the proposed linac, the cavity parameter can be estimated to
L=05m; ZefZ 60 MQ/m; N = 1 gaps, 7}2 08, U,=10MV; Q,= 12500

» The wall losses results in Pj,¢c = 1.05 MW, and the stored field energy W = 6.43 J.
> The tolerance A= 0.01, Qguncn = 2.3 X 1078C and this corresponding to a proton

number N, = 1.44 X 10''per bunch.

L This shows that the single bunch beam load will not affect the cavity oscillations.
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v Special features of TNSA require special code development (3D — PIC LASIN code).

v CH- DTL simulations approved with 500 mA equivalent linac current and even more??
v’ The first CH- cavity for Laser accelerated protons is demonstrated.

v' Realistic distribution — with co-moving electrons is generated (input from measurements and
simulations) and used in LORASR simulations.

v’ Effective acceptance and acceleration of 72% of the whole protons is proved.

v" Emittance growth in longitudinal plane due to the deformed input emittance.

v Comparison of A.) with B.) simulations.

v Further improvement could be needed.

v" Continue the CH- DTL design by MWS — Simulations and technical developments, beam
loading .....

v’ Built the first dedicated cavity....
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“"Anyone who has never made a mistake has never tried anything new" A/bert Einsteimst

Thank you for Listening!!




