Transverse Emittance Splitting in the UNILAC

- Requirements at SIS injection
- Conceptual layout of emittance splitting section (brief)
- Beam dynamics tools
- Magnetized beams
- Procedure to apply
- PARMT simulations
- Set-up for experimental proof of principle, required components
- Additional application: beams from ECR

GSI Accelerator Facilities

UNILAC as Injector for SIS Synchrotron

Figures of merit for an injector:

- small emittance
- high current
 - \rightarrow high ratio current / emittance \approx Brilliance

UNILAC in the Press

BILD FRANKFURT * 5. OKTOBER 2010 Blick ins Innere eines		
		schleunigers
Hi	er wil	d all
CLEF CLEF Darmstadt - Was geschah eine	Forse	schung, auf des- sen Gelände das Mega-Projekt
kunde nach dem Urknail? Wie wurde die Weit eine bro- deinde Ursup- pe, sind ver- schiedene Arten won Materie auf-	Kanone, ist nur viel größer (120 Meter lang, 2Me- ter Durchmes- ser). Da werden kleine Atome mit hohen Spannun- gen beschleu-	entsteht. "FAIR" baut auf eine be- stehende Anlage auf, kann immer weiter ausge- baut werden. 1,2 Mrd Euro kostet es. "Hes-
gebaut, z. B. die unerforschte dunkte Materie? Das soll ein neues For- schungszentrum in Darmstadt klö- ren. Gestern un-	nigt, in einen Ring geschleudert, auf ändere Materia- lien geschossen. Durch die Auf- prallwucht wer- den sie zertrüm- mert, können un-	sen hat sich als Standort bereit- erklärt, 94 Mio Euro in den Bau zu investieren", so Hessens MP Volker Bauffier (CDU). 178 Mio
terschrieben 9 Staaten aus Asien, Ost- und Westeuropa den Vertrag über Bau und Betrieb, Start- schuss für den Teilchenbe- schleuniger	tersucht werden "Im Universum steckt noch viel unbekanntes Zeug", sagt Ingo Peter, Sprecher des Helmholtz- zentrums für Schwerionenfor-	steuert.Russland bei. 3000 For- scher in 40 Län- dern tüfteln an der Anlage. Der eigentliche Tief- bau beginnt abererstim Win- ter 2011/12. jak
Das 3-D-Model der geplanten Anlage mit Be echtauntear Rin Sie soll ab 201 Ionenstrehlen	P Tefen	Property in
(* englisch für Facility for Antiproton and fon Research in Europe, dt.: Anlage für Antiprotonen, und Ionenforschung)		

Development of Horizontal and Vertical UNILAC Beam Brilliances

Brilliance Definition:

 $B_{x/y}$:= (q/A)*Current / Emittance_{x/y}

GSI

- achieved hor. & ver. UNILAC brilliances are similar
- horizontally we are not ok
- vertically we are ok

Transverse Beam Brilliance Definition

- Horizontal and vertical brilliances are defined separately
 - $B_x = (q/A) * I / E_x$
 - $B_y = (q/A) * I / E_y$
- Now define one single transverse brilliance as
 - $B_{\perp} = (q/A) * I / (E_x * E_y)$

Development of Transverse UNILAC Beam Brilliance

Year

How to Meet Horizontal and Vertical Design Brilliances?

- present UNILAC brilliances are equal
- pushing both brilliances over hor. design value : quite hard & not really required
- emittance transfer from horizontal to vertical plane should help
- transfer should preserve E_x*E_y

GSI

Conceptual Layout of an Emittance Splitter in the UNILAC

- Splitter integrated around existing Charge State Separator
- Splitter comprises :
 - coil pair (B ≈ few T)
 - skew triplet + doublet or triplet
 - diagnostic box with pepper pot

Beam Magnetizer

S

GSI

coils

stripping inside long. B-field

long. B-field couples x & y motion

Skew Quadrupole

Demonstrator for Emittance Splitter in the UNILAC

Set-up for testing:

- low current $H_3^+ \rightarrow$ proton beam (B = 0.8 T)
- no space charge
- low magnetic fields
- required equipment might be available on-site
- simulations: no losses, $\Delta E_x = -41\%$, $\Delta E_y = +142\%$

- the following tools deal with beam rms properties
- concepts hold for total emittances, beam sizes, etc...
- linear elements, to avoid emittance growth from non-linear elements

emittances defined through beam's second moments :

- a_i, b_i : two coordinates of particle i
- <ab>: mean of product a_ib_i
- C is moment matrix (symmetric)

$$C_x = \begin{bmatrix} \langle xx \rangle & \langle xx' \rangle \\ \langle x'x \rangle & \langle x'x' \rangle \end{bmatrix}, \quad E_x^2 = \det C_x$$
$$C_y = \begin{bmatrix} \langle yy \rangle & \langle yy' \rangle \\ \langle y'y \rangle & \langle y'y' \rangle \end{bmatrix}, \quad E_y^2 = \det C_y$$

assumption: x & y plane are decoupled

linearly transport from point_1 \rightarrow point_2 through matrices :

$$\begin{bmatrix} x \\ x' \end{bmatrix}_2 = M_x \begin{bmatrix} x \\ x' \end{bmatrix}_1 \qquad \qquad M_x = \begin{bmatrix} m_{11} & m_{12} \\ m_{21} & m_{22} \end{bmatrix}, \ det \ M_x = 1$$

beam moments transport by matrix equation :

 $C_{x2} = M_x C_{x1} M_x^T$

analogue in y

If x & y plane are decoupled :

$$M = \begin{bmatrix} m_{11} & m_{12} & 0 & 0 \\ m_{21} & m_{22} & 0 & 0 \\ 0 & 0 & m_{33} & m_{34} \\ 0 & 0 & m_{43} & m_{44} \end{bmatrix}, det M = det M_x \cdot det M_y = 1 \cdot 1 = 1$$

- E_x and E_y are preserved separately
- x-y coupling moments are zero
- non-coupling elements: drift, dipole, quadrupole, rf-gap
- transport in x calculated w/o knowledge on beam properties in y
- to change E_x and/or E_y , coupling elements must be non-zero :
 - solenoids
 - tilted (skewed) quadrupoles or dipoles
 - non-linear magnets not considered here

if x & y plane might be coupled

 \rightarrow generalization to 4d equations :

$$E_{4d}^{2} = det \begin{bmatrix} \langle xx \rangle & \langle xx' \rangle & \langle xy \rangle & \langle xy' \rangle \\ \langle x'x \rangle & \langle x'x' \rangle & \langle x'y \rangle & \langle x'y' \rangle \\ \langle yx \rangle & \langle yx' \rangle & \langle yy \rangle & \langle yy' \rangle \\ \langle y'x \rangle & \langle y'x' \rangle & \langle y'y \rangle & \langle y'y' \rangle \end{bmatrix} = det C$$

transport of moments from $1 \rightarrow 2$ as usual:

$$\begin{bmatrix} x \\ x' \\ y \\ y' \end{bmatrix}_{2}^{\prime} = \begin{bmatrix} m_{11} & m_{12} & m_{13} & m_{14} \\ m_{21} & m_{22} & m_{23} & m_{24} \\ m_{31} & m_{32} & m_{33} & m_{34} \\ m_{41} & m_{42} & m_{43} & m_{44} \end{bmatrix} \begin{bmatrix} x \\ x' \\ y \\ y' \end{bmatrix}_{1}^{\prime}, \quad det M = 1$$

$$C_{2} = M C_{1} M^{T}$$

$$E_{4d}^{2} = det \begin{bmatrix} \langle xx \rangle & \langle xx' \rangle & \langle xy \rangle & \langle xy' \rangle \\ \langle x'x \rangle & \langle x'x' \rangle & \langle x'y \rangle & \langle x'y' \rangle \\ \langle yx \rangle & \langle yx' \rangle & \langle yy \rangle & \langle yy' \rangle \\ \langle y'x \rangle & \langle y'x' \rangle & \langle y'y \rangle & \langle y'y' \rangle \end{bmatrix} = det C$$

- E_{4d} is preserved for even solenoids, tilted dipoles & quadrupoles; all tilt angles
- These elements couple x & y plane and produce x-y correlations
- $E_x \cdot E_y \ge E_{4d}$
- $E_x \cdot E_y = E_{4d}$ holds just for zero x-y correlation
- although E_{4d} is preserved, $E_x \cdot E_y$ increases if x-y correlation is produced

Transport matrix of a solenoid, length L, and field strength B :

$$M_{Solenoid} = \begin{bmatrix} C^2 & \frac{SC}{K} & SC & \frac{S^2}{K} \\ -KSC & C^2 & -KS^2 & CS \\ -SC & -\frac{S^2}{K} & C^2 & \frac{SC}{K} \\ KS^2 & -SC & -KSC & C^2 \end{bmatrix} \qquad K = \frac{B}{2(B\rho)}$$

$$C = cos(KL)$$

$$S = sin(KL)$$

Transport matrix of a thin hor. foc. quadrupole, rotated clockwise by -45°, focusing length 1/q :

$$M_{SkewQuad} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & -q & 0 \\ 0 & 0 & 1 & 0 \\ -q & 0 & 0 & 1 \end{bmatrix}$$

Symplectic Transformations

• drifts, gaps, tilted quads & dipoles, solenoids are "symplectic" :

$$M^{T}JM = J$$
$$J := \begin{bmatrix} 0 & 1 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & -1 & 0 \end{bmatrix}$$

- symplectic transformations preserve two quantities :
 - $\bullet E_{4d}^2 = \det C$
 - $Trace{JCJC}$

see for instance prst-ab 6 104002 (2003)

Symplectic Transformations

Symplectic beam lines :

- preserve E_{4d}
- change simultaneously $E_x \& E_y$:
 - no initial x-y correlations $\rightarrow E_x \& E_y$ generally increase in x-y coupling devices
 - initial x-y correlations $\rightarrow E_x \& E_y$ might be decreased by lowering correlations
- allow swapping $E_x \leftrightarrow E_y$

<u>But</u>

- symplectic beam lines do not change the "emittance splittability" of a beam
- "regular" beams are not "splittable"
- "regular": distributions as generally used for simulations (no inter-plane coupling)
- splittablity related to *Trace*{*JCJC*}, how ??????

- no emittance splitting with skewed quads/dipoles or solenoids only
- to make beam splittable → apply non-symplectic action

<u>solenoid fringe field</u>: non-symplectic transformation, changing $Trace{JCJC}$, E_{4d} preservation

$$M_{SolFringe} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & +K & 0 \\ 0 & 0 & 1 & 0 \\ -K & 0 & 0 & 1 \end{bmatrix} \quad K(in) = -K(out)$$

$$B$$

$$K = \frac{B}{2(B\rho)}$$

· each particle gets angular momentum

• $\mathbf{L}_i = \mathbf{r}_i \times \mathbf{p}_i \sim \mathbf{x}_i \mathbf{y}_i' - \mathbf{x}_i' \mathbf{y}_i$

(follows from div $\mathbf{B} = 0$)

change of beam's Bp prevents kick-cancellation

- \rightarrow beam experiences non-symplectic transformation
- \rightarrow beam is "magnetized" (splittable) at solenoid exit

- Magnetized beams are splittable
- "Magnetizatized" and "x-y correlated" are not the same !!!
- x-y correlated beams can be magnetized or not
- Beam lines made just from solenoids, skewed quads & dipoles, drifts, gaps :
 - can change x-y correlations
 - can not change *Trace*{*JCJC*}
 - preserve the magnetization, i.e. the "splittability"

- electron guns inside a solenoid provide magnetized beams
- e-linacs: emittance ratios of $E_x/E_v \approx 50$ were achieved (D. Edwards, XXth LINAC Conf., Monterey)
- proposal to apply this principle to ion beams :
 - stripping inside long. magn. field
 - non-symplectic action → transverse emittance splitting possible

remark: beams from ECRs are magnetized and can be split

Procedure of Emittance Splitting in the UNILAC (1)

- switch off the skew triplet and the normal triplet -
- place the stripping foil inside a long. B-field (0.n T) produced by coil pair
- proton beam behind coil/foil combination :
 - magnetized, emittance splitting possible
 - inter-plane correlations, i.e. $E_x \cdot E_y \geq E_{4d}$

Procedure of Emittance Splitting in the UNILAC (2)

• at entrance TK3QD6: measure full 4d beam's second moment matrix C₁, i.e. 10 values

 $C_{1} = \begin{bmatrix} \langle xx \rangle & \langle xx' \rangle & \langle xy \rangle & \langle xy' \rangle \\ \langle x'x \rangle & \langle x'x' \rangle & \langle x'y \rangle & \langle x'y' \rangle \\ \langle yx \rangle & \langle yx' \rangle & \langle yy \rangle & \langle yy' \rangle \\ \langle y'x \rangle & \langle y'x' \rangle & \langle y'y \rangle & \langle y'y' \rangle \end{bmatrix}_{TK3QD6_{in}}$ C is symmetric !

• set TK3QD6 and skew triplet to provide transport of beam moments $C_2 = M C_1 M^T$ with

$$C_{2} = \begin{bmatrix} \langle xx \rangle \langle xx' \rangle & 0 & 0 \\ \langle x'x \rangle \langle x'x' \rangle & 0 & 0 \\ 0 & 0 & \langle yy \rangle \langle yy' \rangle \\ 0 & 0 & \langle y'y \rangle \langle y'y' \rangle \end{bmatrix}_{Skew_{out}} \text{ and minimized } det \begin{bmatrix} \langle xx \rangle \langle xx' \rangle \\ \langle x'x \rangle \langle x'x' \rangle \end{bmatrix}_{Skew_{out}} \text{ at skew exit}$$

• use last triplet to re-match envelope for further transport

Simulations with PARMILA-Transport

Inside Coil Pair, i.e. on Stripping Foil

L. Groening, IAP Freitagsseminar, October 22nd, 2010

Exit of Coil Pair

L. Groening, IAP Freitagsseminar, October 22nd, 2010

Entrance to TK3QD6

GSI

Entrance to First Normal Quadrupole

Comparison: Before/After Section

Experimental Set-up for Proof of Principles

built a set-up for experimental demonstration of simulated case ($H_3^+ \rightarrow 3p$) :

- Coil pair :
 - B_o = 0.77 T
 - L_{eff} = 40 cm; i.e. R_{Coil} = 29 cm

- 2 Triplets :
 - R_{app} ≥ 40 mm
 - B'•L_{eff} \ge 3 T

2 "Injection Triplets"
 R_{ap} ≈ 40 mm
 L_{eff} ≈ 20/40/20 cm
 B'_{max} ≈ 15 T/m

• Pepper pot device → improvements, but further testing required

ECR LEBT

beam after extraction from ECR

confining in long. B-field:

- ECR-extracted beam has x-y correlations
- $E_x = E_y$
- $E_x \cdot E_y = 4.2 E_{4d} \ge E_{4d}$ (from correlations)
- ECR-extracted beam is magnetized
- beam is "emittance splittable"

Emittance Splitting of an ECR Beam

L. Groening, *IAP Freitagsseminar*, October 22nd, 2010

Emittance Splitting of an ECR Beam

- ECR beams are used at therapy accelerator facilities
- split emittance beams could be injected into the synchrotron
- split emittances will increase MTI efficiency

- Emittance splitting might improve synchrotron injection efficiency without :
 - primary beam current increase
 - beam collimation
- Method requires long. B-field along stripper and 3 skewed quads
- Simulations (low current, light ions): hor. emitt. reduction by n•10% possible
- Experimental proof of principle using $H_3^+ \rightarrow 3p$ along UNILAC proposed
- Additional application → ECR beams (no stripper required)
- Might be applicable also along mod. HSI-Alvarez section $(U^{4+} \rightarrow U^{37+})$:
 - lower B-field (≈ 2 T) w.r.t. stripping $U^{27+} \rightarrow U^{73+}$ at 11.4 MeV/u
 - simulations needed:
 - does split beam survive transport to SIS ?
 - what beam is really required at SIS injection (I, q, E_x , E_y , ΔT_{pulse})?