The linear Decelerator Facility HITRAP A Status Report

W. Barth, D. Beck, T. Beier, M. Bevcic, E. Berdermann, M. Block, A. Bräuning-Demian, H.
Brand, K. Brantjes, E. Bodewits, G. Clemente, L. Dahl, C. Dimopoulou, C. Dorn, S. Eliseev, S.
Fedotova, R. Fischer, P. Forck, F. Herfurth, R. Hoekstra, M. Kaiser, O. Kester, H.-J. Kluge, S.
Koszudowski, N. Kotovski, C. Kozhuharov, C. Krantz, R. Lotz, M. Maier, F. Nolden, W.
Nörtershäuser, F. Peldzinski, J. Pfister, W. Quint, D. Racano, U. Ratzinger, A. Sauer, A.
Schempp, M. Shaaban, A. Sokolov, M. Steck, K. Stiebing, T. Stöhlker, W. Vinzenz, M. Vogel, G.
Vorobjev, C. Will, D. Winters, A. Wolf, O. Zurkan

Outline

- Planned Experiments
- HITRAP overview
- Developments at the ESR
- The HITRAP facility
 - DDB
 - IH
 - RFQ
 - Trap
 - EBIT

Precision Experiments on Single Highly-Charged lons

Test of quantum electrodynamics in extreme fields

- g-factor of the bound electron
- Electron correlations and relativistic effects

Determination of fundamental constants

- Mass of the electron m_e
- Future: fine-structure constant α

Ultra-precise mass measurements

 Determination of atomic and nuclear binding energies

Spectroscopy, Reactions and Surface Studies with HCI

Laser spectroscopy of H-like ions:

- Nuclear properties (Bohr-Weisskopf effect)
- Atomic and nuclear polarization by optical pumping

X-ray spectroscopy with HCI:

- Precision measurements of binding energies
- Isotope shift: nuclear charge radii

Reaction microscope:

Studies of reaction kinematics of slow HCI

Interaction of slow HCI up to U⁹²⁺ with surfaces:

• Strongly inverted systems ('hollow atoms')

HITRAP – Linear Decelerator

Some of the Challenges

- Never done before!
- 1 ion pulse with only 10⁶ ions every 30 to 60 seconds
- "Normal" Linac diagnostics not well suited
- Unexpected behavior of decelerating accelerator

ESR – From 400 to 4 MeV/u

ESR – Experimental Storage Ring at GSI with stochastic and electron cooling

F. Herfurth - The linear Decelerator Facility HITRAP

ESR – From 400 to 4 MeV/u – critical points

Intensity limited at/due to

- End of ramp
- Storage and cooling at low energy

Cycle time limited due to

March 2010

Cycle time reduction for commissioning

- Transport 4 MeV/u beam without acceleration/decleration is not feasible
- 30 MeV/u SIS extraction gives a factor 2

March 2010

F

ESR – Rebunching at 4 MeV/u

Current on Farady cup (a. u.)

F. Herfurth - The linear Decelerator Facility HITRAP

March 2010

FT !

ESR – Rebunching at 4 MeV/u

F. Herfurth - The linear Decelerator Facility HITRAP

Newly developed Detectors

HITRAP – Linear Decelerator

HITRAP – Double Drift Buncher

November 2007

Simulations of transversal Optics

New transverse Settings

Beam on DF3

Name	84Kr33+ (simulation) with bigger diaphragm B' [T/m]	84Kr33+ best setting with small diaphragm (April 2010) B' [T/m]
	0.475	0.400
TRI QDII	0,175	0,189
TR1 QD12	0,121	0,118
TR2 QT21	2,573	9,062
TR2 QT22	4,326	9,398
TR2 QT23	3,841	7,123
TR3 QT31	50,028	27,202
TR3 QT32	46,091	40,705
TR3 QT33	50,330	60,705
TR3 QD41	53,731	58,170
TR3 QD42	52,603	56,924
TR3 QD51	50,926	28,194
TR3 OD52	51,462	31,129

J. Pfister

HITRAP – Linear Decelerator

The HITRAP IH Structure

f _{rf}	108	MHz
Q ₀	25800	
Z _{eff}	220	MΩ/m
E _{eff}	1.3	A/q*MV/m
Length	2.6	m
P_{rf}^{1}	170	kW

HITRAP – IH Structure

October 2008

Retuning IH Gap voltage distribution

January 2009

Principle of our Energy Analyzers

November 2009, March 2010

HITRAP – IH Structure

Energy spectrum IH

 Fraction of decelerated particles close to theory (55%)

Energy spectrum after IH

 Fraction of decelerated particles close to theory (55%)

IH Structure – Energy Spectrum

G. Clemente

HITRAP – Linear Decelerator

HITRAP – ReBuncher & RFQ

- deceleration from 0.5 MeV/u to 6 keV/u
- installed

r _o	4 mm
Length	1.9 m
cells	143
stem distance	136 mm
stem width	120 mm
Z	120 kΩm
V _{rod}	70 kV

Longitudinal Simulations

IH Structure

RFQ Structure

F. Herfurth - The linear Decelerator Facility HITRAP

What did We try to do?

Tuning energy spectrum of IH output

HITRAP

-2 % in Voltage of IH and shift of 1° of the IH phase

565

IH settings during RFQ Tests

New Energy Analyzer – RFQ (Nov.10)

New Energy Analyzer – RFQ (Nov.10)

Commissioning Summary to Date

Two weeks/year; Beam intensity ~10⁶ ions, once/minute

2007: ESR Extraction tests / Double Drift buncher comm.

2008: DDB / IH test, first deceleration in IH seen

2009: IH retuning, RFQ mounted, Emittance measurements

2010: ESR rebunching at 4 MeV/u, 30 MeV/u mode installed, ~40% decelerated to 500 keV/u

2010: RFQ commissioning run in November

HITRAP – Linear Decelerator

HITRAP – LEBT & Cooler Trap

HITRAP – LEBT & Cooler Trap

- trap installed in magnet offline injection tests ongoing
- Extensive calculations done
 resistive cooling possible
 but slower than expected

Electron cooling*

- in Coulomb collisions, ions transfer energy to e⁻
- electrons are rapidly cooled by synchrotron radiation to 4.2 K

Approximations:

- instantaneous conversion $E_{ion} \rightarrow T_e$
- no ion-ion collision
- isotropic e⁻ distribution

Warning: radiative recombination!

Conclusions: e⁻ cooling down to 10 eV possible within ~ 1 s and 10-20% ion losses

* = G. Zwicknagel, in "Non-neutral Plasma Physics VI", eds. M. Drewsen, U. Uggerhoj, H. Knudsen, AIP Conference Proceedings, 862, 281 (2006)

Resistive cooling of an ion cloud

- cooling of Center of Mass motion N times faster
- "invisible" internal modes?
- \rightarrow asymmetric coupling and nonlinear contributions to image charge

Spectrogram of 30 C⁵⁺ from our PIC code

F. Herfurth - The linear Decelerator Facility HITRAP

HITRAF

U⁹²⁺ in the HITRAP cooler Trap

F. Herfurth - The linear Decelerator Facility HITRAP

HITRAP – Linear Decelerator

HITRAP Experimental Area

A small EBIT as Test Ion Source

Charge Breeding of Potassium

Summary

- HITRAP will be the strongest source for heavy, highly-charged ions
- A linear decelerator has been constructed – key components are an IH, a RFQ and a Penning trap + ESR special operation
- First deceleration has been achieved – beam quality and intensity as expected
- A EBIT test ion source for intermediately charged ions is operational

Space charge: potential flattening / frequency shifts

Image charge

F. Herfurth - The linear Decelerator Facility HITRAP

