

Laser Driven X-ray Radiography On Warm Dense Matter

Daniel C. Hochhaus^{1, 2}, Seminar @ Uni Frankfurt 16.12.2011

¹ExtreMe Matter Institute EMMI, Darmstadt ²Goethe-University, Frankfurt

WDM: Definition

Warm Dense Matter = Dense plasmas at temperatures of 0.5 - 50 eV($\approx 5.000 - 500.000 \text{ K}$) at around solid density

WDM \rightarrow strongly correlated $\langle E_{pot} \rangle \approx k_B T_e$ WDM \rightarrow partly degenerated $k_B T_e \approx E_{Fermi}$

Example:

Titanium @ solid density, T = 10 eV:

Coupling parameter: $\Gamma := \frac{\langle E_{pot} \rangle}{k_B T_e} \approx 10$ ($\Gamma << 1$ for ideal plasma)Degeneracy parameter: $\Theta := \frac{k_B T_e}{E_{Fermi}} \approx 2$ ($\Theta >> 1$ for classical plasma)Pressure:p = 5 MBar (!)

Part of HED: pressures > 1MBar, energy densities of > 100 J/mm³

1

WDM: Why Should We Care?

WDM can be found:

- in the center of giant
 planets or brown dwarfs
- whenever a solid is transformed into a plasma
- o during the process of ICF

Image: Massachusetts Academy of Sciences

Image: Lawrence Livermore National Laboratory

Moreover:

- Wanted: complete physical description
- Access to this regime only recently possible

HED: Generation in the Laboratory I

Static Pressure:

Isothermal pressure increase possible. Maximum achieved pressure ≈ 3-4 Mbar

Shock:

Dynamically reach higher pressures Maximum achievable compression in a single shock limited! (→ Hugoniot-curves)

Examples for shock compression methods: Flyer plate impact (gas guns, z-machine) Laser shock compression (typ. ns-long, high-energy laser pulses)

HED: Generation in the Laboratory II

Energy deposition inside target:

via charged particles (protons, ions):

$$\frac{dE}{dx} \propto -\frac{n_e Z^2}{\beta^2} [\dots]$$

via x-rays:

$$\frac{dE}{dx} = -\mu_E(hv)$$

(Quasi-)Isochoric heating: heating process faster than hydro-expansion

Examples for quasi-isochoric heating via particles:

Heavy-ions at high ion beam intensities (HHT @ GSI, HIHEX and LAPLAS @ FAIR) (~ ns timescale)

```
Laser-generated protons or ions (~ ps timescale)
```

```
Laser-generated electrons (~ ps timescale)
```

Laser-generated Electrons I

Laser intensities about ≥ 1E18 W/cm² ($|\vec{E}_{max}| \ge 2.7E12$ V/m) → Electron energies

$$\langle E_{kin} \rangle = \frac{m_e}{2} \langle v^2 \rangle = \dots = \frac{1}{4} \frac{e^2 \left| \vec{E}_{max} \right|^2}{m_e \omega^2} \approx 90 \sqrt{I_{18} \lambda_{\mu}^2} \quad [\text{keV}]$$

Laser-plasma interaction:

- o inverse bremsstrahlung
- o resonance absorption
- o skin-layer heating
- o Brunel-heating
- J x B-Heating
- o Ponderomotive acceleration
- o Anharmonic resonance
- 0 ...

Dependent on plasma-gradients, intensity, polarization...

Simulation via **Particle-In-Cell (PIC)** codes.

Calculations performed by A. Karmakar, P. Gibbon, FZ Jülich

X-ray Radiography: Requirements

Radiography = taking photographs of the inside of a sample at different waiting times after start of expansion

Typical sample size L \approx 10 – 100 μ m \rightarrow

- o spatial resolution better than L
- time resolution better than $\approx L/v_s = 0.3 3$ ns
- $n_e < n_c(hv)$ and reasonable opaqueness \rightarrow
- hv ≈ 1 10s of keV (intermediate x-rays)

Photon number of "imager" \geq self emission of target \rightarrow

o **bright** backlighter

second high energy laser beam focussed onto a thin foil

Bremsstrahlung + line emission confined to foil

Experiment: Impressions

Analysis: HOPG Spectrometer

Analysis: Hot Electron Spectrum I

Parametrized according to
$$f(E) \propto \frac{\eta_1}{T_1} Exp \left[-E / T_1\right] + \frac{\eta_2}{T_2} Exp \left[-E / T_2\right]$$

Self-developed collisional model (1D) including:

- \circ relativistic K_{α}-production cross section
- o ESTAR stopping power
- o ohmic heating
- o **refluxing**
- EOS for temperature (PROPACEOS)

not including:

- o self-consistent electric and magnetic fields
- o multi dimensional effects

Analysis: Hot Electron Spectrum II

(Wilks: 105 keV, Beg: 184 keV)

max. current \approx 200 kA

Analysis: Energy Deposition HELMHOLTZ GSI Shot 34 10000 10000 temperature Energy deposition averaged over 5 µm [kJ/g] energy dep. Temperature averaged over 5 µm [eV] 1000 1000 T_{max} ≈ 150 eV 100 100 10 10 \rightarrow Relation Temp. <-> Space 1 En. Dep. <-> Space 200 400 600 800 1000 0 Penetration into wire [µm]

Analysis: Spectral Properties of Ti- K_a

Hydrodynamics: RALEF-2D Simulation

Hydrodynamics Quantitatively

o Testshots: Resolution: (19 \pm 2) µm (transversal) x (60 \pm 10) µm (longitudinal)

Important: imaging Spectrum?

• Comparison of "shadowdepths" for different lineout positions and directions

Distinguish between imaging radiation and background

1D Hydrodynamics: Fixed Initial Temperature

 $T_0 = 5 eV$

 $T_0 = 10 \text{ eV}$

Problems occur at higher T₀ due to steepness of T-gradients & 2D effects

X-Ray Radiography @ FAIR

Snapshot: Expansion of a solid lead cylinder r = 300 μm close to critical point

GSI

HELMHOLTZ

> 10¹² bremsstrahlungphotons (4π sr) in relevant spectral range!

Density taken from N.A.Tahir et al., Phys. Rev. Lett. 95, 035001

Summary

- ✓ First laser pump-probe experiment at PHELIX
- <u>Electron generation & transport:</u>
 Good agreement between simple model and full
 3D hybrid PIC
 - \rightarrow 3D effects negligible
 - → Collsional + ohmic heating main contributors
 → Full refluxing
- ✓ Wire Hydrodynamics:
 - Agreement (1D) at moderate temperatures
 - Good reproduction of "burning-speed"
 - Not-so-good agreement at high temperatures
 → 2D effect
- ✓ Smaller exp. errorbar \rightarrow test of EOS (Δ = 10-20 %)
- X-ray radiography: promising complementary method to probe dense, heavy ion produced plasmas

