

16.07.2010

Frankfurter Neutronenquelle

Status und Perspektive

on behalf of the FRANZ community

Oliver Meusel

Institut für Angewandte Physik

Ion Source

Ion Source Development & Design

- $I_p = 200 \text{ mA}$ $\varepsilon_{rms,norm} = 0.07 \pi \text{ mm mrad}$
- W = 120 keV dc-operation

P = 24 kW

mechanical design of the proton source

K. Volk, W. Schweizer, R. Nörenberg

Institut für Angewandte Physik

Plasma Generator & Extraction System

hot filament driven gas discharge

Experiments

- lifetime of the filament
- reliability of the source
- sparking
- power deposition in the extractor
- plasma vs. beam properties

Institut für Angewandte Physik

Impact of Plasma Properties

$$I_p = 200 \text{ mA}$$
 $N = 1,2 \cdot 10^{18} \text{ s}^{-1}$

stady state assumption

Institut für Angewandte Physik

Low Energy Beam Transport

LEBT - 3 Sections - 4 Lenses

Institut für Angewandte Physik

Institut für Angewandte Physik

Pulser and Electric Deflector

Institut für Angewandte Physik

Emittance Growth due to Lens Abberations

density distribution of transverse momentum $v_{t,px}$

$$v_{t,px} = \int_{-y}^{+y} n_i \cdot \mathcal{E}_{rms,x} dy$$

Institut für Angewandte Physik

Emittance Growth due to Collective Processes

phase diagram of the proton beam during the transport through LEBT section

Institut für Angewandte Physik

Institut für Angewandte Physik

Accelerator Stage

Radio Frequency Quadrupole - RFQ

Institut für Angewandte Physik

IH - Cavity

Max. Proton Current	200 mA
Exp. Power Consumption IH	54 kW
IH ε (out, norm. rms)	$0.95 \ \pi \ \text{mm} \ \text{mrad}$

Institut für Angewandte Physik

IH - Cavity E-Field Distribution

Institut für Angewandte Physik

Coupled RFQ-IH Cavities

Institut für Angewandte Physik

Medium Energy Beam Transport

CH - Rebuncher Cavity

Institut für Angewandte Physik

Bunch Compressor

Towards Compression Ratio of $\eta = 48$

Single 1ns Pulse at Li-Target

Institut für Angewandte Physik

Design Study of Multi Track Devices

Institut für Angewandte Physik

Activation Branch

High Power Target

Target prototype development at Karlsruhe for beam power up to 6 kW.

Neutron yield and maximum neutron energy in forward direction (0°) .

Institut für Angewandte Physik

Neutron Dynamics

examples for Mollweide projection

Neutron Dynamics

examples for Mollweide projection

Neutron energy distribution as a function of E_p

Institut für Angewandte Physik

GOETHE UNIVERSITÄT FRANKFURT AM MAIN

Experiments

neutron caption reaction

Institut für Angewandte Physik

Compressor Branch

Compressor Mode

- Measurement of differential cross sections of small amounts of (radioactive) samples (advanced fuel cycle, astrophysics)
- Determination of properties of resonances (spins and parities)
- Study of γ-decay photon strength functions

Shielding

floor plan of FRANZ within the concrete shielding

Institut für Angewandte Physik

RF - Amplifier

Institut für Angewandte Physik

Thank You!

H. Podlech, U. Ratzinger, A. Schempp, +18, +2 / IAP, Goethe Universität Frankfurt
M. Heil, R. Plag, R. Reifarth / GSI, Darmstadt
K. Stiebing, J. Stroth / IKF, Goethe Universität Frankfurt
F. Käppeler, D. Petrich / IKF, FZ Karlsruhe

LINAC-AG	http://linac.physik.uni-frankfurt.de/
AG-Schempp	http://iaprfq.physik.uni-frankfurt.de/
NNP-AG	http://nnp.physik.uni-frankfurt.de

Institut für Angewandte Physik