Presolar grains in meteorites – origins and nucleosynthesis

U.Ott

Frankfurt December 3, 2010

Rough outline:

- meteorites
- recognition of isotope anomalies
- presolar grains vs. bulk and CAI isotopes
- presolar silicon carbide and the s-process
- * an age for presolar SiC

<u>falls vs. finds:</u> - falls = fall observed - finds = found, have a "terrestrial age" of up to 1 Ma in places with little weathering like Antarctica

join a search party !

parent bodies of meteorites = mostly asteroids from the main belt as indicated by, e.g., the orbital characteristics of those for which a trajectory could be determined Pribram and Neuschwanstein Asteroiden-Gürtel also more recently: Jupiter - Puerto Lapice (from Mars Vesta, presumably) - Almahata Sitta (small Erde asteroid - approach observed) Innisfree Lost City Schultz

in addition some from the Moon, from Mars, from comets (?)

distinguish nucleosynthetic from other anomalies (radiogenic, cosmogenic, ...)

identifying anomalies - technical:

- technique: mass spectrometry, after appropriate handling / preparation / isolation of samples
- * mass spectrometric technique depending on problem: thermal ionization mass spectrometry (TIMS), inductively coupled plasma (ICP-MS), gas mass spectrometry, secondary ion mass spectrometry (SIMS), resonance ionization (RIMS) primary difference: in how to make ions
- ★ most sensitive to "foreign" additions: noble gases (because of their low abundance in rocks)
 → have played special role in the detection of presolar grains in meteorites

<u>Presolar grain anomalies - stardust</u>

vs. CAIs = formed within Solar System

* CAIs contain <u>some</u> material not completely homogenized isotopically with rest of Solar System; but formed within presolar grains = stardust,

record earlier stage; effects much larger

- key to identification of presolar matter in meteorites: natural low abundance of noble gases in solids; unusual isotopic structures of noble gases in presolar materials can "shine through" even in bulk analyses
- Image: Markov Markov
- Allende meteorite: Xe released in certain temperature steps: up to ~2x relative enhancement of lightest and heaviest isotopes
- Xe-HL from presolar diamond

Presolar grains in meteorites - Overview			
mineral	isotopic signatures	stellar source	contribution
diamond	1500 ppm Kr-H, Xe-HL, Te-H	supernovae	?
silicon	enhanced ¹³ C, ¹⁴ N, ²² Ne, s-process elements	AGB stars	> 90 %
carbide	low ¹² C/ ¹³ C, often enhanced ¹³ N enhanced ¹² C, ¹⁵ N, ²⁸ Si; extinct ²⁶ Al, ⁴⁴ Ti	J-type C stars (?) supernovae	< 5 % 1 %
30 ppm	$\log {^{12}\text{C}/^{13}\text{C}}, \log {^{14}\text{N}/^{15}\text{N}}$	novae	0.1 %
graphite	enhanced ¹² C, ¹⁵ N, ²⁸ Si; extinct ²⁶ Al, ⁴¹ Ca, ⁴⁴ Ti	SN (WR?)	80 %
10 ppm	Kr-S	AGB stars	< 10 %
	$\log {}^{12}\mathrm{C}/{}^{13}\mathrm{C}$	J-type C stars (?)	< 10 %
>50 ppm	$low {}^{12}C/{}^{13}C; Ne-E(L)$	novae	2 %
corundum/	enhanced ¹⁷ O, moderately depleted ¹⁸ O	RGB and AGB	>70 %
spinel	enhanced ¹⁷ O, strongly depleted ¹⁸ O	AGB stars	20 %
> 200 ppm	enhanced ¹⁶ O	supernovae	1 %
silicates	similar to oxides above		
silicon nitride	enhanced ¹² C, ¹⁵ N, ²⁸ Si; extinct ²⁶ Al	supernovae	100 %
0.002 ppm			

> AGB stars (low mass < 8 M_{sun})

> supernovae (high mass > 8 M_{sun})

- ➢ higher temperatures, densities → higher burning phases
- "onion shell" structure
- explosion +
 explosive
 nucleosynthesis

Most clear-cut case: silicon carbide

- best (?) understood nucleosynthesis process: s-process
- takes place in He shell of TP-AGB stars
- most (>90%) of presolar SiC grains come from AGB stars (from single grain C, Si etc. analyses)

some data on s-process by various methods

- * noble gas mass spectrometry \rightarrow noble gases (Kr, Xe)
- ★ thermal ionization mass spectrometry
 → first analyses of "solid elements" (bulk SiC): Sr, Ba, Nd, Sm, Dy
- single grain analysis of single SiC grains by
 -- RIMS (resonance ionization mass spectrometry):
 Sr, Zr, Mo, Ru, Ba
 -- NanoSIMS (Ba)

bulk SiC analysis by slurry ICP-MS (multi-element)

s-process and solar system abundances:
 flow equilibrium almost reached
 over large ranges valid is "local approximation"

-- interesting branching at $^{134}Cs \rightarrow ^{134}Ba/^{136}Ba$, $^{135}Ba/^{136}Ba$ -- closed neutron shell at $^{138}Ba \rightarrow ^{138}Ba/^{136}Ba$

well known lower than solar s-Ba ¹³⁸Ba/¹³⁶Ba: bulk SiC

Barium single grains by NanoSIMS (Marhas): how good are the models?

- > classical model of s-process (constant neutron density, temp. etc.)
- → half life
 against neutron
 capture between
 ~50 a (G) and
 ~350 a (A)
- ➤ → n densities between 0.44 and 3.1 x10⁸ cm⁻³

overall relative elemental abundance pattern in REE region ~ predictions (exceptions Dm, Eu, Yb: volatility)

Celestial History

how to date a presolar grain ?

- classical approach radioactive decay:
 D = daughter, P = parent element;
 1, 2 = isotopes;
 1= radiogenic / radioactive; 2 = stable nonradiogenic
 λ = decay constant
- > then: D1/D2 = (D1/D2)_{ini} + (P1/D2) ($e^{\lambda t}$ -1)
- > problem with stardust unusual isotopic compositions
 → what was non-radiogenic ratio (D1/D2)_{ini} ? (for "model age")
 → or: can one possibly assume grains lie on isochrone?
- > alternative (first suggested/applied by Anders and colleagues)
 - exposure to cosmic rays (→ pre-solar cosmic ray exposure age, to be added to Solar System age)
- > applied to SiC, CR production of ²¹Ne from Si target

not so easy either...

- 1. what is the abundance of non-cosmogenic ²¹Ne?
- 2. what was the production rate (depending on flux and spectrum of cosmic rays) >4.6 Ga ago ?
- 3. significant error in first application (Tang and Anders 1988): recoil loss of spallation ²¹Ne from μm-sized grains
- used curve 1;
 based on an experiment
 of Greiner et al. (1975)
- our experiment:
 mean range ~2.5 μm

 \rightarrow fold momentum /energy distribution with energyrange relationship \rightarrow recoil losses

an experiment...

1. take (terrestrial) SiC grains of various sizes

 distribute homogeneously (and sufficiently separated) in a matrix where spallation does not produce ²¹Ne

paraffin wax

paraffin wax with SiC

- 3. irradiate with energetic protons (1.6 GeV), at Saturne (Saclay) - satellite experiment
- recover irradiated SiC, measure Ne in grains, compare with production (from ²²Na in SiC+paraffin)

most recent work / new possibilities - collaborations

- new technology for high-sensitivity Ne analyses (ETH Zürich);
 + supply of "large" (> 5 µm) SiC grains (Chicago, St. Louis)
 → analyses of single large grains (little recoil loss)
- vidence for cosmic ray effects in such large grains also seen in Li isotopes (enhanced ⁶Li/⁷Li) - St. Louis
- calculations of recoil energy <u>distribution</u>
 by F. Wrobel (Montpellier)

not only critical recoil losses, but also critical assumptions on stellar ²¹Ne/²²Ne

for production rates in IS space

- commonly used:
 predictions of Reedy
 (1989)
- uses for flux and spectra geometric mean of the four spectra on the right (not the "source" spectrum; from Reedy, 1987)
- additional input: nuclear cross sections
- > overall uncertainty~ 60 % (Reedy) (?)

The results

- ²¹Ne ages mostly < 200 Ma, distinctly shorter than "expected" interstellar grain lifetimes of ~ 500 Ma
- > no obvious trend with grain size

<u>a scenario for young grains</u>

- starburst ~ 2 Ga before SS formation
- Suggested by Clayton in connection with Si isotopes; a possible explanation for special ¹⁸O/¹⁷O of solar system (~5 instead of ~3.5 in ISM today)
- AGB parent stars of SiC most likely mass ~1.5-2 M_☉
 - → at 500 Ma before SS formation not yet in AGB phase
- first grains from these sources arrived only "shortly" before SS formed

- > would be nice to have ages for the typical smaller grains note: Jumbos are poor in Ne-G:
 - -- **KJ**A (0.4 μm) to **KJ**G (3.0 μm) 2000 40,000 (increasing with size)
 - -- while Jumbos only between 0 and 1,000 (in units of 10-8 cc/g)

To conclude

- there is stardust in meteorites recognizable by isotopic composition
- > Red Giants most important source
- information on main s-process component from studies of silicon carbide grains
- > SiC grains are surprisingly young

puzzles remain - there is work left

not just for silicon carbide

