The ALICE Experiment @ the LHC

Measurement of Quarkonia as a Probe for a Quark Gluon Plasma

> Moritz Pohl Goethe Universität Frankfurt

> > IAP Seminar

2. December 2011

Performance Studies for the Measurement of $\psi(2S)$ via the Decay Channel $\psi(2S) \rightarrow J/\psi \ \pi^+\pi^- \rightarrow e^+e^-\pi^+\pi^-$ with the ALICE Detector

Moritz Pohl Goethe Universität Frankfurt

IAP Seminar

2. December 2011

Outline	Motivation 0000000000	Quarkonia 00000	Infrastructure 00000000	Analysis 00000	Results 0000	Summary
Outline						

- Physical Motivation
 - Introduction
 - Quark Gluon Plasma
 - Quarkonia
- Infrastructure
 - The LHC
 - ALICE
- Performance Study
 - Simulation
 - Analysis
- Summary and Outlook

Outline	Motivation ••••••	Quarkonia 00000	Infrastructure 00000000	Analysis 00000	Results 0000	Summary
Eleme	ents					

Natural Philosophy

- Empedokles, 450 b.c. Earth, Air, Water, Fire
- Leukipp, 430 b.c. Atoms and void as fundamental parts

Modern Physics

- Thompson, 1897: The electron
- Rutherford, 1909: Strukture of the atom
- Bohr, 1913: Quantum physical model of the atom

Outline	Motivation ○●○○○○○○○○	Quarkonia 00000	Infrastructure 00000000	Analysis 00000	Results 0000	Summary
The s	mallest Co	mponent				

The Standard Model

- Gell-Mann, 1964: Quark model
- What is the most elemental component?
- How to study?

Outline	Motivation	Quarkonia 00000	Infrastructure 00000000	Analysis 00000	Results 0000	Summary
The St	tandard M	odel				

Subparticles

- Leptons
- Quarks
- Hadrons (Neutral)
 - Mesons (2 Quarks)
 - Baryons (3 Quarks)
 - Perhaps others

Outline	Motivation ○○○○●○○○○○	Quarkonia 00000	Infrastructure 00000000	Analysis 00000	Results 0000	Summary
Confine	ement					

Asymptotic Freedom

- Strong interaction
- Quantum Chromo Dynamic (QCD)
- Quarks and Gluons can not be isolated singularly
- Potential:

$$V_s = -\frac{4}{3}\frac{\alpha_s}{r} + kr$$

• "Running" coupling constant: $\alpha_{\mathcal{S}}(Q^2) = -\frac{12\pi}{(33-2n_f)\cdot\ln(Q^2/\Lambda^2)}$

Outline	Motivation ○○○○●○○○○○	Quarkonia 00000	Infrastructure 0000000	Analysis 00000	Results 0000	Summary
Confine	ement					

Asymptotic Freedom

- Strong interaction
- Quantum Chromo Dynamic (QCD)
- Quarks and Gluons can not be isolated singularly
- Potential:

$$V_s = -\frac{4}{3}\frac{\alpha_s}{r} + kr$$

• "Running" coupling constant: $\alpha_{S}(Q^{2}) = -\frac{12\pi}{(33-2n_{f}) \cdot \ln(Q^{2}/\Lambda^{2})}$

 Outline
 Motivation
 Quarkonia
 Infrastructure
 Analysis
 Results
 Summary

 The Quark Gluon Plasma (QGP)

Extreme Matter

- $\bullet\,$ Hadron is state of matter of a quark gluon system $\to\,$ Are there other states?
- High temperature (200 MeV) or density $(10^{18} \frac{\text{kg}}{\text{m}^3}) \rightarrow$ unbound quarks and gluons
- Can this state be reproduced in laboratories?
- Can it be found in the universe?

7 / 33

Outline	Motivation	Quarkonia 00000	Infrastructure 00000000	Analysis 00000	Results 0000	Summary
QGP ir	n Experim	ent				

How To

- Have the right idea and money
- Build infrastructure
- Accelerate ions to 99.9999% c
- Fixed target or collision experiment

Outline	Motivation ○○○○○○○●○	Quarkonia 00000	Infrastructure 00000000	Analysis 00000	Results 0000	Summary
QGP in	Experime	ent II				

∀t

Sequence of a Heavy Ion Collision

- Fireball
- QGP
- Hadrongas
- Chemical freeze out
- Thermical freeze out

Outline	Motivation	Quarkonia 00000	Infrastructure 00000000	Analysis 00000	Results 0000	Summary
Signat	ures of a (QGP				

Observables

- Transverse momentum p_{T}
- Transverse energy $E_{\rm T}$
- Multiplicity of particles
- Photons (prompt, thermal)
- Leptones
- Jet quenching
- Productionrate of heavy quarks
 - ightarrow Quarkonia

Outline	Motivation 0000000000	Quarkonia •••••	Infrastructure 00000000	Analysis 00000	Results 0000	Summary
Quark	onia					

Long Life Resonances

- System of heavy quarks
- Bottomonia: *bb*
- Charmonia: *c* \bar{c}
- Small decay width: J/ ψ 87 keV; ψ (2S) 277 keV
 - \rightarrow Long lifetimes, treated like particles
- Different decay channels. Most common measured: Di-leptonic

Outline	Motivation 0000000000	Quarkonia ○●○○○	Infrastructure 0000000	Analysis 00000	Results 0000	Summary
Charm	onia					

Particle Data Group 2010

Outline	Motivation 0000000000	Quarkonia ○○●○○	Infrastructure 00000000	Analysis 00000	Results 0000	Summary	
Quarkonia Supression							

Screening in a QGP

- Analog to debye screening
- Color charge is dominating
- Color charge screening by free gluons → Decrease of charmonium numbers

•
$$V_{Q\bar{Q}}^{\mathrm{eff}}(r,T) \approx -\frac{4}{3} \frac{\alpha_s}{r} e^{r/\lambda_{\mathrm{D}}(\mathrm{T})}$$

- Compare to drell Yan Process (scaled pp to NN)
- Quarkonia thermometer

Outline	Motivation 0000000000	Quarkonia ○○●○○	Infrastructure 00000000	Analysis 00000	Results 0000	Summary
Quarko	onia Supre	ssion				

Screening in a QGP

- Analog to debye screening
- Color charge is dominating
- Color charge screening by free gluons → Decrease of charmonium numbers

•
$$V_{Q\bar{Q}}^{\mathrm{eff}}(r,T) \approx -\frac{4}{3} \frac{\alpha_s}{r} e^{r/\lambda_{\mathrm{D}}(\mathrm{T})}$$

- Compare to drell Yan Process (scaled pp to NN)
- Quarkonia thermometer

Outline	Motivation 0000000000	Quarkonia ○○○●○	Infrastructure 00000000	Analysis 00000	Results 0000	Summary
The ψ	(2 <i>S</i>) Meso	on				

Why measure $\psi(2S)$

- Mass: 3.686 GeV/c²
- Charmonium: *cc* system
- Production of charmonia is an promising signature of a QGP
- \bullet Understanding of excited charmonia states is crucial for J/ψ analysis
- Branching ratio for $\psi(2S) \rightarrow J/\psi \ \pi^+\pi^- \rightarrow e^+e^-\pi^+\pi^-$ is $\approx 2\%$; nearly three times higher than the dileptonic br
- The exotic X(3872) particle exhibits the same decay channel

Outline	Motivation 0000000000	Quarkonia ○○○○●	Infrastructure 00000000	Analysis 00000	Results 0000	Summary
The X((3872) Pai	rticle				

What shouldn't be there...

- Belle experiment in 2003:Peak in invariant mass of $J/\psi \ \pi^+\pi^-$
- CDF 2009: $\sqrt{s} = 1.96$ TeV $p\bar{p}$ collisions
- Quantum numbers not confirmed; 1⁺⁺ or 2⁻⁺
- No plausible charmonium state
- Diverse theories: slightly bound diquark-antiquark system (cucā); D
 ^{*0}D⁰ molecule....

 Outline
 Motivation
 Quarkonia
 Infrastructure
 Analysis
 Results
 Summary

 European Organization for Nuclear Research

- Staff: 8000 + 2500
- 85 Countries
- 575 Universities
- Located at the border of swiss and france near Geneva
- Biggest research facility in the world

 Outline
 Motivation
 Quarkonia
 Infrastructure
 Analysis
 Results
 Summary

 The Large Hadron Collider @ CERN

Facts

- Perimeter 26.7 km
- Cost 3.10⁹ Euro
- Magneticfield up to 8 Tesla
- ATLAS, CMS, LHCb, TOTEM, ALICE
- 2800 Bunches with 10¹¹ protons
- Max. collision energy: pp collisions $\sqrt{s} = 14$ TeV, in PbPb $\sqrt{s} = 5.5$ TeV
- World record 11.2010: PbPb collision with $\sqrt{s} = 2.76$ TeV

 Outline
 Motivation
 Quarkonia
 Infrastructure
 Analysis
 Results
 Summary

 The ALICE Experiment at the LHC
 Infrastructure
 Infrastructure</t

A Large Ion Collider Experiment (ALICE)

- General-purpose heavy-ion detector
- Focus on QGP studies in heavy-ion collisions
- pp data as reference
- 10.000 Tons
- Different detectors
- More than a 1000 scientists
- Datarate 1,25 GB/s

1. ITS (Inner Tracking System)
 2. FMD (Forward Multiplicity Detector)
 3. TPC (Time Projection Chamber)
 4. TR0 (Transition Radiation Detector)
 5. TOF (Time-of-Flight Detector)
 6. HMPID (High-Momentum Particle Identification Detector)
 7. PHOS CPV (Photon Spectrometer Charged Particle Veto Detector)
 8.13 Magnet

9. Absorber 10. Tracking Chambers 11. Muon Filter 12. Trigger Chambers 13. Dipole Magnet 14. PMD (Photon Multiplicity Detector) 15. Compensator Magnet

Outline	Motivation 0000000000	Quarkonia 00000	Infrastructure ○○○○○●○○	Analysis 00000	Results 0000	Summary
Central	Barrel De	etectors I				

Inner Tracking System (ITS)

- 97.6 x 43.6 cm
- Detection surface 6.28m²
- Resolution better than 100 μ m
- Localization of primary & secondary vertices
- Subsystems: SPD, SDD, SSD

Outline	Motivation 0000000000	Quarkonia 00000	Infrastructure ○○○○○●○	Analysis 00000	Results 0000	Summary
Central	Barrel De	etectors II				

Time **P**rojection **C**hamber (TPC)

- 5 x 1.60 m
- Active volume 88 m³
- Gasmixture: 85.7% Ne, 9.5% CO₂, 4.8% N₂
- Main tracking detector
- Particle identification (PID)
- Max. drift time 92 μ s
- 557.568 Read out pads
- Possible detection range 0.1
 100 GeV/c

Central Barrel Detectors III

Transition Radiation Detector (TRD)

- 18 super-modules with 30 submodules made of 6 stacks
- 85% Xe + 15% CO₂
- Sandwich material, 3 layers
- Electrons cause radiation, pions don't
- Electron/Pion separation, 100:1 with momentum bigger than 1 GeV/c
- Trigger
- Not completed today

		00000000			 	
Outline Motivation Quarkonia Infrastructure Analysis Results Summ	Outline	0000000000	00000	00000000	0000	Summary

Simulation

- Recreat detector geometry with software
- Take efficiencies and into account
- Calculate interactions and tracks for particles
- Calculate detector response

Reconstruction

- Find tracks in the detectors
- Calculate kinematic
- Independet from simulation
- Reconstructed data from simulation and real measurement are comparable

Outline	Motivation 0000000000	Quarkonia 00000	Infrastructure 00000000	Analysis ○●○○○	Results 0000	Summary
Monte	e-Carlo Dat	ta Sets				

$\psi(2S)$ Signal

- Pure $\psi(2S)$ MC sample
- 0.84 M $\psi(2S)$ decaying exclusively via $\psi(2S) \rightarrow J/\psi \ \pi^+\pi^- \rightarrow e^+e^-\pi^+\pi^-$

Background

- 1.2 M minimum bias pp collisions at $\sqrt{s}=7~{\rm TeV}$
- Pythia6 MC production with Perugia0 tune

Outline	Motivation 0000000000	Quarkonia 00000	Infrastructure 00000000	Analysis ○○●○○	Results 0000	Summary
Recons	truction C	hain				

Track selection

- Fully reconstructed data
- Track quality cuts
- PID via parametrization of TPC & TRD Signal

$\psi(2S)$ Reconstruction

- Reconstruct $e^+e^- \rightarrow J/\psi$
- Select J/ψ candidates via invariant mass
- Combine with $\pi^+\pi^-$ pairs

Outline	Motivation 0000000000	Quarkonia 00000	Infrastructure 00000000	Analysis ○○○●○	Results 0000	Summary
Recons	truction (Chain				

Analysis

- Calculate reconstruction efficiency
- S/B & significance for min. bias pp collisions at $\sqrt{s}=7~{\rm TeV}$

• Cut on
$$e^+e^ p_{\rm T}$$

Mass window

- Select J/ψ candidates via the invariant mass
- Reduce background via this selection
- vary upper and lower limit
- $\bullet \ \to \ {\rm different} \ {\rm mass} \ {\rm windows}$

- Study kinematics of the decay products to find differences
- Compare $p_{\rm T}$ of e^+e^- from J/ψ of $\psi(2S)$ decays to those from background
- Vary min. $p_{\rm T}$ of e^+ and e^- from 0 to 2.0 GeV/c

- Study kinematics of the decay products to find differences
- Compare $p_{\rm T}$ of e^+e^- from J/ψ of $\psi(2S)$ decays to those from background
- Vary min. $p_{\rm T}$ of e^+ and e^- from 0 to 2.0 GeV/c

- E_{ψ(2S)} = reconstructed measureable
 reconstructed: e⁺e⁻π⁺π⁻ from the same ψ(2S) decay
- measurable: $e^+e^-\pi^+\pi^-$ in $|\eta| < 0.84$
- Include mass windows
- Include p_{T} cut for e^{\pm}
- $E_{\psi(2S)} \approx 14\%$ (2.7 -3.15 GeV/c, min. $p_T = e^+, e^- 1$ GeV/c)

- E_{ψ(2S)} = reconstructed/measureable
 reconstructed: e⁺e⁻π⁺π⁻ from the same ψ(2S) decay
- measurable: $e^+e^-\pi^+\pi^-$ in $|\eta| < 0.84$
- Include mass windows
- Include p_{T} cut for e^{\pm}
- $E_{\psi(2S)} \approx 14\%$ (2.7 -3.15 GeV/c, min. $p_T = e^+, e^- 1$ GeV/c)

- E_{ψ(2S)} = reconstructed measureable
 reconstructed: e⁺e⁻π⁺π⁻ from the same ψ(2S) decay
- measurable: $e^+e^-\pi^+\pi^-$ in $|\eta| < 0.84$
- Include mass windows
- Include p_{T} cut for e^{\pm}
- $E_{\psi(2S)} \approx 14\%$ (2.7 -3.15 GeV/c, min. $p_T e^+, e^- 1$ GeV/c)

- $E_{\psi(2S)} = \frac{\text{reconstructed}}{\text{measureable}}$
- reconstructed: $e^+e^-\pi^+\pi^-$ from the same $\psi(2S)$ decay
- measurable: $e^+e^-\pi^+\pi^-$ in $|\eta| < 0.84$
- Include mass windows
- Include p_{T} cut for e^{\pm}
- $E_{\psi(2S)} \approx 14\%$ (2.7 -3.15 GeV/c, min. $p_{\rm T}$ e^+, e^- 1 GeV/c)

Outline	Motivation 0000000000	Quarkonia 00000	Infrastructure 00000000	Analysis 00000	Results ○○●○	Summary
Invaria	nt Mass					

 Outline
 Motivation
 Quarkonia
 Infrastructure
 Analysis
 Results
 Summary

 Signal to Background / Significance

• For 10⁹ pp events (minimum bias,
$$\sqrt{s} = 7$$
 TeV, min. $p_{\rm T} e^+, e^- 1$ GeV/c):

- Signal to background ratio: $(1.8\pm0.4)\cdot10^{-3}$
- Significance: $(2.96 \pm 0.30) \cdot 10^{-1}$

31 / 33

Outline	Motivation 0000000000	Quarkonia 00000	Infrastructure 00000000	Analysis 00000	Results 0000	Summary
Summa	ary					

ALICE

- The LHC is the biggest accelerator ever
- ALICE is capable to proof and study the QGP
- It offers unique opportunities
- Significant results published since autumn 2010

For the $\psi(2S)$ Analysis

- \bullet Good mass resolution $\approx 7~MeV/c^2$
- Reconstruction efficiency $\approx 14\%$
- Signal to background ratio: $(1.8\pm0.4)\cdot10^{-3}$
- \bullet Significance for 10^9 pp events: $(2.96\pm0.30)\cdot10^{-1}$

Outline	Motivation 0000000000	Quarkonia 00000	Infrastructure 00000000	Analysis 00000	Results 0000	Summary
Outloo	k					

- LHC and the installed detectors are unique, and will provide the scientific community with challenges and information for years
- With completed TRD and LHC at maximum intensity ALICE will reach a break through in QGP studies
- For the $\psi(2S)$ Analysis:
 - S/B improvement needs further studies
 - Study kinematics of the decay products
 - TRD as trigger, enhance signal

Thank you for your attention.

Backup ●○○

PID with the TPC

Backup ○●○

• Bethe Bloch formula for energy deposit in gas

•
$$-\left(\frac{dE}{dx}\right) = K \cdot z^2 \frac{Z}{A} \frac{1}{\beta^2} \left[\frac{1}{2} ln \frac{2m_e \cdot c^2 \cdot \beta^2 \cdot \gamma^2 T_{\max}}{l^2} - \beta^2 - \frac{\delta(\beta\gamma)}{2}\right]$$

Parametrization of the PID

Backup ○○●

- Contamination of electrons with pions
- Function with variables $\epsilon_{\pi}(p_{\mathrm{T}}, \theta, \phi)$

