

FLSR - Frankfurt Low-Energy Storage Ring

A fully electrostatic storage ring for ions of energies up to 50keV

"trap" for dynamic ions (atoms/molecules):

K.E. Stiebing, V. Alexandrov, R. Dörner, S. Enz, N. Yu. Kazarinov, T. Kruppi, A. Schempp, H. Schmidt-Böcking, M. Völp, P. Ziel, M. Dworak, W. Dilfer

Nuclear Instruments and Methods in Physics Research A 614 (2010) 10–16

- not a "classical" storage ring (accumulator)
- enhancement of luminescence for rare products
- allows for detection of neutral reaction products
- complete experiments of the reaction dynamics in "state selected/prepared" atomic and molecular systems
- observation of "slow" processes ($\tau \leq \approx$ sec)

Electrostatic Storage Rings

The mechanical design

- 3.574 / 2.125 Plate area

50 mm

90 mm

30 mm

- ± 3.4 kV

100 mm

Tune values (Qx / Qy)

Electrode lengths

triplet/doublet

Dist. betw. electrodes

 \triangleright

►

Quadrupoles :

singulet

Inner radius

Voltage

- Plate distance
- Voltage

horizontal deflectors (correction):

Plate area - 200 x 200 mm²
 Plate distance - 100 mm

-

-

200 x 200 mm²

100 mm

± 6.7 kV

built between electrodes doublets

Vacuum systems:

- CF-250 all flanges 316 LN (ESR)
- 4 basic chamber-types different set ups:
 - "racetrack" --- 15°-75°
 - "quadratic ring" --- 15°-60°-15°
- exeprimental sections separated by UHV valves

The mechanical design

General parameters :

- Maximum energy 50.0 keV ► Circumference 14.7 m Time per revolution \triangleright for protons of 50keV 4.5 μs
- Focus in exp. Region ► -
- Tune values (Qx / Qy)- 3.574 / 2.125 \triangleright

Quadrupoles :

Electrode lengths		
singulet	-	50 mm
triplet/doublet	-	100 mm
Dist. betw. electrodes	-	90 mm
Inner radius	-	30 mm
Voltage	-	\pm 3.4 kV

75° deflectors :

- Height \triangleright Radii
- Voltage \triangleright

3 x 4 mm²

- 230 mm /270 mm $- \pm 10.1 \, kV$

100 mm

- ± 6.7 kV

200 x 200 mm²

- 120 mm

15° deflectors :

- Plate area ►
 - Plate distance -
- Voltage

►

►

 \triangleright

horizontal deflectors (correction):

- Plate area - 200 x 200 mm²
- Plate distance 100 mm
- built between electrodes doublets

Pumping systems:

- ▶ 8 IGP/TSP Combinations
- Bake out box
 - Vermiculite[®]250°C

-

750 l/s N2

- 1580 l/s H2

- ≤1 x 10⁻¹¹ mbar Best vacuum so far

Vacuum systems:

- CF-250 all flanges 316 LN (ESR)
- 4 basic chamber-types different set ups:
 - "racetrack" --- 15°-75° \geq
 - "quadratic ring" --- 15°-60°-15°
- exeprimental sections separated by **UHV** valves

Activities 2008-2010 and present status of FLSR:

1. <u>Ring:</u>

- Manufacturing of all optical elements
- Alignment of the vacuum chambers
- Develop a procedure for bake-out
- Control systems for FLSR:
 - Voltage adjustment and control
 - ✓ Vacuum control
- Beam diagnostics:
 - ✓ 0°-neutral particle detector
 - Schottky diagnostics
 - Design of pick up
 - Pulsing unit
- Alignment of the ion-optical elements :
 - ✓ alignment on optical test bench
 - Alignment in the ring

2. Transfer beam line:

- two ion sources (14GHz ECRIS / Penning)
- two beam profile/emittance monitors
 - FPROM: Profile monitor
 - ✓ FIBAS: Data analysis system

(Diploma thesis Thomas Kruppi) (Diploma thesis Steffen Enz)

3. Injection beam line:

- Magnetic spectrometer (R=2m; allows analysis of ion of 50keV with Mass 6000)
- 1 FPROM system at the entrance into the injection optics to FLSR
- Injection optics: 3 electrostatic Doublets and 2 parallel plate deflectors

(Diploma thesis Marco Völp) (Bachelor thesis Thomas Felix)

(Bachelor thesis Annika Jung)

(PHD thesis Mohammed Almalki) (Dirk Tiedemann)

<u>F.L.O.C.S. Frankfurt Lense Observation and Control System</u> (verified in LabView[®])

- Set up and control of all voltages in the ring
 - display basic status of vacuum
 - perform protocol of all values automatically and on demand

F.L.O.C.S. Frankfurt Lense Observation and Control System (verified in LabView®)

- Set up and control of all voltages in the ring
 - display basic status of vacuum
 - perform protocol of all values automatically and on demand
- Set up of all voltages in the transfer- and injection-line

F.L.O.C.S. Frankfurt Lense Observation and Control System (verified in LabView®)

- Set up and control of all voltages in the ring
 - display basic status of vacuum
 - perform protocol of all values automatically and on demand
- Set up of all voltages in the transfer- and injection-line
- display and protocol of the vacuum measured in:
 - 8 Ion pumps,
 - 6 Bayart Apert ion gauges ,
 - ✤ 4 extractor ion guages

Beam diagnostics:

K. E. Stiebing, IAP-Seminar, 01/2011

Alignment of the ion-optical elements on the test bench :

- Straight sections: use telescopes aligned to the beam axis
- Challenge: adjust the 75°-Cylinder Deflectors (CD) in their 60°-Sector chambers of only \emptyset = 250 mm
 - 1. use a 175°-test bench for laser alignment and base plates with cones for attaching a tripod with conical posts
 - 2. align the base plate on the test bench by means of a "dummy CD" (tripod with laser mirror)
 - 3. align the CD on its own tripod plate on the base plate on the test bench
 - 4. align the base plate in the sector chambers by laser alignment (laser on the telescope position)
 - 5. "simply" insert the CD into the chamber (without further necessity of aligning)

optical 175°- bench

CD- base plate with cones for tripod

Adjusting the base plate by means of a laser mirror on tripod

Adjusting the CD on its tripod (to fit in the base plate in the chamber)

Alignment of the ion-optical elements in the ring :

Alignment of the ion-optical elements in the ring :

- 1. Transfer beam line/ Injection
 - two ion sources (14GHz ECRIS / Penning)
 - two FPROM profile/emittance monitors
- 2. Injection beam line:
 - Magnetic spectrometer
 - 1 FPROM system
 - injection optics

MAD-calculation for the injection beam line

to meet the conditions at the injection points

K. E. Stiebing, IAP-Seminar, 01/2011

-100 mra

- Finish the mechanics of the ring (probably within next two months)
- Bake out procedure
- Preparation of beams (tailoring the emittance of the injected beams)
- More diagnostics in the ring (scrapers, FPROM at the 0°-ports, Faraday cups)
- Improve vacuum is the injection region
 (better pumping of dumped beam, avoid beam losses by scattering at the components)
- can the injection scheme be improved?
 (for the sake of simplicity, presently only single turn injection)
- In beam ion diagnostics (Schottky Noise, 0°-spectroscopy)
- Beam pulsing ?
- Cooling of beams?

many thanks to: H. Schmidt-Böcking, A. Schempp, R. Dörner

P. Ziel, M. Dworak, W. Dilfer, D. Tiedemann , M. Almalki

V. Alexandrov, N. Yu. Kazarinov, (from JINR, Dubna, Moscow-Region, Russia)

S. Enz, T. Kruppi, M. Völp, A. Jung, T. Felix

This work became possible by a grant from "Innovationsfonds der Hessischen Landesregierung" The cooperation with V. Alexandrov was supported by BMBF (WTZ- Programm Grant No: RUS 05/A21)