

Introduction Part 3.a)

Investigations of a small volume typed H⁻-ion source introducing a collar with Cs dispenser

Under cooperation of: Rainer Thomae <u>Working group:</u> C. Gabor, A. Jakob, O. Meusel, J. Pozimski (group leader), F. Santic, J. Schäfer Prof. Dr. U. Ratzinger, Prof. Dr. H. Klein

Schematic drawing of the H⁻-ion source

Wiring diagram of the H⁻-ion source

60...110 V

10...100 A

< 10 kW

< 130 A

1.6 mm

< 30 mT

< 15 mT

Hydrogen 7...14 Pa

1.5...3 mm

1.0...3.5 mm

1.5...9.0 kV

2...8 mm

10...100 Hz

100 µs...1 ms

104...130 mm

C. Gabor, A. Jakob, O. Meusel, J. Pozimski, J. Schäfer, F. Santic, R. Thomae

H⁻-current as a function of the arc power with collar

C. Gabor, A. Jakob, O. Meusel, J. Pozimski, J. Schäfer, F. Santic, R. Thomae

Beam trajectory plot simulated with IGUN

C. Gabor, A. Jakob, O. Meusel, J. Pozimski, J. Schäfer, F. Santic, R. Thomae

H⁻-current vs. arc power without collar

Pulse shape of the H⁻-beam

C. Gabor, A. Jakob, O. Meusel, J. Pozimski, J. Schäfer, F. Santic, R. Thomae Negative Ion Source Meeting, Dublin, 2003, 14.-15. April

Summary

For planned (diagnostic) experiments should be the achieved current high enough

It is possible to work with/ without collar => Research into Cs influence on beam transport,

Further investigations (beam profile, CCD camera, emittance measuerment) to the ion beam shift due to magnetic filter& bending field are necessary.

C. Gabor, A. Jakob, O. Meusel, J. Pozimski, J. Schäfer, F. Santic, R. Thomae

Introduction Part 3.b)

Preparation for non-destructive beam diagnostic via laser electron detachment

Overview

- ~ Motivation & Principle
- ~ Important Laser Parameters
- ~ Ion beam transport simulation

<u>Working group</u> C.Gabor, A.Jakob, O.Meusel, J.Pozimski (group leader), F. Santic, J.Schäfer, Prof. Dr. U. Ratzinger, Prof. Dr. H.Klein

Problems with destructive measurement devices

Vaporise the metall Deformations Melting Plasma

- (i) It is difficult to determine the influence on degree of space charge and beam potential.
- (ii) Secondary electrons produced by the interaction of the ions and the harp.

- ~ Due to the low binding energy of the additional electron photons with appropriate energy (W~1.5 eV) can be neutralise the negative ions
- ~ Peak cross section $s=4.0*10^{-17}$ at a wave length of 830 nm

C. Gabor, A. Jakob, O. Meusel, J. Pozimski, J. Schäfer, F. Santic, R. Thomae

Production rate due to photo detachment

C. Gabor, A. Jakob, O. Meusel, J. Pozimski, J. Schäfer, F. Santic, R. Thomae

Features of the Lasersystem

Versa Disk Laser Yb:YAG Laser		
Wave length	1030 nm	
Max. power output P	20 W	
Beam diameter	~ 1.5mm	
Beam divergence (full angel)	<0.5 mrad	
Mode Structur TEM ₀₀	measured	
Power Stability	measured	
Power consumption (240V/ 50Hz)	<600W	
Interface	RS - 232	
Special water cooling		

Laser Head: Length: 700 mm Width: 120 mm Height: 80 mm

Achieved results			
Current [A]	Power [W]	Power Stability [%]	M ²
12,0	1,51	0,79	1,01
20,0	9,44	1,08	1,06
25,0	14,8	0,73	1,02
30,0	20,2	0,31	1,01

C. Gabor, A. Jakob, O. Meusel, J. Pozimski, J. Schäfer, F. Santic, R. Thomae

Low Energy Beam Transport line

Multi Channel Plate

Faraday cup

Preliminary CCD camera measurement

Measurement

Divergence angle ~ 68 mrad

=> either the compensation degree might be higher or the div. angle might be smaller

Simulation

Compensation degree: 80 % Entrance distribution based on IGUN (r=2.5mm and r`=40..50 mrad) Divergence angle: 82 mrad

..... but measurement and simulation are in the same oder of magnitude!

C. Gabor, A. Jakob, O. Meusel, J. Pozimski, J. Schäfer, F. Santic, R. Thomae Negative Ion Source Meeting, Dublin, 2003, 14.-15. April

C. Gabor, A. Jakob, O. Meusel, J. Pozimski, J. Schäfer, F. Santic, R. Thomae

Conclusion & Outlook

Photodetachment emittance measurement

- -> approximatly non-destructive (only a small portion of H⁻- will be neutralized)
- -> no mechanical parts
- -> no secondary electrons produced by interaction of H⁻-ions (e.g.) with slit

Simulations has been shown

- -> Solenoids will achieve quite good transmission if the div. angle < 50..80 mrad
- -> 2 solenoids have the advantage of different beam angle.

Design Principle of Optical Cavity

For emittance measurements :

- (i) recommended to use the cavity without additional optic elements
- (ii) The AOM will deflect the laser beam in 0.order into a beamdump and in 1.order to the ion beam.

CCD camera Beam profile

Laser beam propagation

