Status of Accumulator Ring Simulation

Martin Droba

Riezlern 2005

Contents

- Motivation
- Parallel Cluster
- Computation Examples
- Magnetic surface
- Gabor lens
- Future work

Motivation

- Accumulator ring with magnetic surfaces
- Example : 8 -figure ring - 30° sectors, $R=0.5 \mathrm{~m}$, R1 $=0.08 \mathrm{~m}$
- Different designs
- Calculation of coordinate system for long term simulations
- PIC simulations

Motivation

- Different slope angles $20^{\circ}, 30^{\circ}, 45^{\circ}, 60^{\circ}$
- Straight sector $0.51 \mathrm{~m}, 0.42 \mathrm{~m}$, $0.24 \mathrm{~m}, 0 \mathrm{~m}$

CSC(Center for Scientific Computing)

http://www.csc.uni-frankfurt.de

- Xeon Cluster 32bit
- February 2003
- 70 node Linux Cluster with 2.4 GHz dual Pentium Xeon CPUs for each node.
- 32 nodes Myrinet, 38 nodes 100Mbit Ethernet
- 2GB RAM
- Opteron Cluster 64bit
- May 2004
- 282 nodes = 564 1.8 Ghz Opteron 244 processors.
- 64 nodes Myrinet, 218 nodes Gbit Ethernet.
- Myrinet - 320 GFlop/s,
- Ethernet - 650 GFlop/s.
- 4GB RAM

Magnetic surface

- Definition: If a magnetic field line stays within a surface, coming arbitrarily close to any point of surface, then that surface is a magnetic surface
- Concepts: Rotational transform(field line twist) and shear
- Example: Tokamaks,
 Stellarators

Magnetic surfaces

- Why calculate magnetic surfaces?
- Example: B=1T Electrons

$$
\omega_{g}=q B / m=1.76 \cdot 10^{11} \mathrm{~Hz}
$$

- at least 20 points per turn $=>$ time step $\mathrm{dt}=2.8^{*} 10^{-13} \mathrm{~s}$
- Averaging through the Larmor oscillation $=>$ local curvature of the field is needed in every calculation point

Magnetic surface - Computation method

- Field line tracing method - „Follow the B-vector" from Biot-Savart formula

$$
\vec{B}=\int \frac{\mu I}{4 \pi} \frac{d \vec{l} \times\left(\vec{r}-\vec{r}^{\prime}\right)}{\left|\vec{r}-\vec{r}^{\prime}\right|^{3}}
$$

- Point filtering
- NURBS (Non-Uniform Rational B-Splines) Surfaces

Magnetic surfaces as a $1^{\text {st }}$ test object

- 10000 steps around figure-8 (1step ~ 0.8 mm)
- 20 surfaces at once
= 20 processors
(independent calculations)
- 100 Turns around the figure-8
- Simulation time 50 h on 20 Processors
- Computed Parameter: B, A, χ, ψ - magnetic Flux, metric tensors

Magnetic surfaces as a $1^{\text {st }}$ test object

Magnetic surfaces - B field

Magnetic surface

Colour coding - B-field : green 0.6 T red 1.4 T
Important for reflection of particles

Gabor lens as a 2nd test object

Gabor lens - Field

- Sparse matrix format saving of memory
- Iteration methods BiCGSTAB (BiConjugate Gradient Stabilized)
- Cuting in longitudinal direction $=>$ depending on number of processors
- Changing of boundary data in every step
- 3D-Poisson Equation in cylindrical mesh
- r=0 Problems => Gauss formula

Gabor lens - Field

- Mesh 61x61x217 = 807457 points
- Number of processors
- 2 - 50
- 150 iteration steps $=>$ residual norm $\sim 10^{-10}=$ accuracy
- Computation time

- 60 - 200 s

Gabor lens - Field

- Time scaling
- Comparison with 2D-Program 0.01\%
- By changing of mesh-resolution also on axis variation in 0.01\%

Gabor lens - Field

Comparison between 2 simulations step1=2*step2

Gabor lens - Motion

- PIC - Method
- Boundary condition electrodes
- Poisson processes \Leftrightarrow Motion processes sending and receiving of data
- $1^{\text {st }}$ test only with external field => no space charge effects

Gabor lens - Motion

- First results
- $\mathrm{B}=0.007 \mathrm{~T}$
- U=2kV
- Initial kinetic energy $<0-4 \mathrm{keV}>$
- Time step $\mathrm{dt}=4 \mathrm{e}-11 \mathrm{~s}$
- Calculation time for 2200 steps $=90 \mathrm{~min}-10000$ particles per processor

Gabor lens - Motion

Conclusion and Outlook

- Magnetic surfaces were calculated - coordinate system for the accumulator
- Field calculation code was written and tested
- Motion in cylindrical coordinate was calculated Future plans:
- PIC - Space charge effects have to be include
- Motion in accumulator - averaging through Larmor oscillation
- Long term simulation - stability !

Some calculations

$$
B=1 T, n_{B}=\varepsilon_{0} B^{2} /\left(2 m_{p}\right)=2.65 \cdot 10^{15} m^{-3}
$$

$\delta B / B \approx\left(n_{e} / n_{B}\right)^{2}\left(\frac{a}{c / \omega_{c}}\right)^{2}$
$\nabla^{2} \phi=\frac{e}{\varepsilon_{0}} N(\psi) \exp \left(\frac{e \phi}{T_{e}(\psi)}\right)$
$j_{\text {kritisch }}=n_{B} e v=2.65 \cdot 10^{15} \cdot 1.602 \cdot 10^{-19} \cdot 0.018 \cdot c=2292.5 \mathrm{~A} / \mathrm{m}^{2}=0.229 \mathrm{~A} / \mathrm{cm}^{2}$

