The FRANKFURT NEUTRON SOURCE AT THE STERN-GERLACH-ZENTRUM (FRANZ)*

L.P. Chau, O. Meusel, U. Ratzinger, A. Schempp, K. Volk (IAP, University Frankfurt/Main, Germany), M. Heil, (FZ Karlsruhe/GSI Darmstadt)

Abstract

About 40 nsec long proton pulses with an energy of 120 kV and currents of up to 200 mA will be produced at the 150 kV high current injector with a repetition rate of up to 250 kHz. The first part of acceleration will be done by a 275 MHz RFQ. After this section the proton bunches will have an energy of about 1.0 MeV. A 5-gap-cavity will allow for an energy increase and for a variable end energy from 1.9 MeV to 2.1 MeV. In order to get 1 nsec short pulses at the 7Li-target a buncher-system of the Mobley-Type [1] is proposed, whereby periodic deflection at one focus of a magnetic bending system guides the bunch train from the linac on different paths to the other focus, where the n-production target is located in the time focus. By 7Li(p,n) 12C reactions low-energy neutron bunches will be produced with an averaged integrated flux-density of 7 \times 10^{10} / (cm^2 s) at a distance of 0.8 m. The upper limit for the neutron spectra will be below 500 keV. The main challenge with respect to this buncher is the strong space charge interaction, which has to be treated by careful multi-particle simulations.

FRANZ is among other duties well suited for (n,γ)-cross-sectional measurements with astrophysical relevance [2]. It is characterised by high n-intensities, its 1 nsec-pulse-structure and a very huge repetition rate up to 250 kHz.

This paper intents to motivate and to give a rough overview on the FRANZ project. In the first section the motivation for a pulsed high intensity keV neutron source is given. The following section gives a sketch of the FRANZ project, especially the concepts of the 1 nsec-buncher-system. And finally the anticipated constraints are pointed out in the last section.

MOTIVATION

A powerful neutron source with high intensities in the lower energy spectrum (see Tab.1) would allow attractive experiments in many different fields of research, e.g. astrophysics, transmutation physics, biophysics, materials research and detector development.

Astrophysical Research

The different processes of nucleosynthesis in stars are intensively investigated at present [3, 4]. The most important processes are the s-process (slow neutron capture), the r-process (rapid neutron capture) and the p-process (photodissociation). The s-process is closely connected with the He-shell burning in Red Giant stars. Typical neutron capture times in Red Giants are in the order of one year. Due to the much shorter average β-decay times the reaction path follows the valley of stability and the abundances of the emerging elements are proportional to the inverse of their (n,γ)-cross-section. Because of the limited neutron flux of the current machines a quantitative prediction with a needed accuracy of 1-3 % is only available for a small part of the reaction path. Especially the values for small and resonance-dominated cross-sections and for instable isotopes, which are responsible for branchings of the reaction part, are not available with sufficient accuracy. The analysis of such branch points yields insight to inner physical parameters of stars without assumption of a special model.

The high intensity 7Li(p,n) 12C-spectrum and the 1 nsec pulse structure of FRANZ is well suited for high accuracy measurements in a low background environment. These results will contribute to the understanding of the nucleosynthesis in the universe since the Big Bang.

Transmutation and Materials Research

Another and also important task of FRANZ is to study the n-capture cross-sections of those elements more accurately, which are needed in materials for advanced reactor concepts. With these results the U- and Th-resources could be used more efficiently, and especially the radioactive waste could be destroyed more effectively than with a fast neutron spectrum. Therefore the information of neutron cross sections in the keV-range is needed more than ever [5]. In addition to the approved materials some sub-critical accelerator driven systems will use or plan to use quite new materials, for which the reaction cross sections are mostly or completely unknown [6]. In this task FRANZ could contribute some more accurate results because of its high neutron-intensities.

Detector Development

The institute of nuclear physics at Frankfurt (IKF) is involved in detector developments for large experiments like FAIR-CBM [7]. Not the time-structure but the high intensities are required for this task. It is possible to reach an integrated neutron flux of 10^{13} / (cm^2 s) at FRANZ by using a compact configuration. With this provided intensities the Monolithic Active Pixel Sensor (MAPS) could be tested for their durability against non-ionising radiation.

SKETCH OF FRANZ

FRANZ is consisting of a high current proton source on a 150 kV platform, RF-LINAC and an 1 nsec-buncher system.

Work supported by HBFG

* Work supported by HBFG
\(\Delta T \) is the length of one macro bunch. The distance between the \(^7 \text{Li} \)-target and the sample is given by 0.8 m. The single bending magnet in this figure is just a symbol for a more complicated bending system. (see Fig. 1)

A volume plasma source developed at IAP was successfully tested at p-beam currents up to \(180 \text{mA} \) [8]. Therefore, a DC extracted beam will be chopped at variable repetition rates up to \(250 \text{kHz} \) after passing the terminal voltage. About 40 ns long beam pulses will be injected into the RF-LINAC.

IAP is experienced in designing and constructing high current, low energy LINACs. The first stage will be a 175 MHz-z-RFQ, which gives the low energy 40 ns proton bunches a micro structure and boosts them up to \(1 \text{MeV} \). This RFQ is discussed in detail in ref. [9].

In the second stage the macro bunches will be boosted by an energy variable H-Type-DTL up to a final energy between \(1.9 \text{MeV} \) and \(2.1 \text{MeV} \). Both possibilities are considered to use either the \(H_{110} \) or the \(H_{210} \)-mode for this acceleration. The first option is the well known Interdigital H-type (IH) structure [10]. The second option would be a Cross bar H-type (CH) structure, which has been designed and studied at IAP/Frankfurt(Main) for several years [11]. The final design of this structure could be similar to the CH-LINAC module for the FAIR p-LINAC [12].

Inspired by [1] an \(1 \text{ns} \)-Buncher-System composed of a rf-chopper and two skew magnets with spatially varying magnet fields (see Fig. 2) is proposed. Periodic deflection by the chopper at one focus of the bending system guides up to 7 bunches on different paths to the other focus, where a neutron production target is located. By choosing convenient parameter configurations all 7 bunches will arrive focused in time at the target and produce an \(1 \text{ns} \) neutron bunch with an intensity in the order of \(10^7/(\text{cm}^2\text{s}) \) and

\[\Delta T = 1 \text{ns} \]
\[\text{rep.rate} = 250 \text{kHz} \]
\[W_{\text{max}} < 500 \text{keV} \]
\[\text{Int. Flux} \sim 4 \times 10^7/(\text{cm}^2\text{s}) \]
\[\Delta x_{\text{target/sample}} \sim 0.8 \text{m} \]
Table 1: target values of FRANZ compare with existing machines

<table>
<thead>
<tr>
<th>Facility (location)</th>
<th>Nat.</th>
<th>int. n-flux at the sample ([n/(cm^2s)])</th>
<th>repetition rate ([Hz])</th>
<th>free path length ([m])</th>
<th>pulse length ([ns])</th>
<th>neutron energy ([keV])</th>
</tr>
</thead>
<tbody>
<tr>
<td>FRANZ (Ffm)</td>
<td>D</td>
<td>(1 \cdot 10^7)</td>
<td>250 000</td>
<td>0.8</td>
<td>< 1</td>
<td>1 (\sim) 200(500)</td>
</tr>
<tr>
<td>FZ Karlsruhe</td>
<td>D</td>
<td>(1 \cdot 10^4)</td>
<td>250 000</td>
<td>0.8</td>
<td>0.7</td>
<td>1 (\sim) 200</td>
</tr>
<tr>
<td>DANCE (Los Alamos)</td>
<td>USA</td>
<td>(5 \cdot 10^5)</td>
<td>20</td>
<td>20</td>
<td>250</td>
<td>\textit{therm.} (\sim) 10^5</td>
</tr>
<tr>
<td>n_TOF (Genf/CERN)</td>
<td>CH</td>
<td>(5 \cdot 10^4)</td>
<td>0.4</td>
<td>185</td>
<td>6</td>
<td>\textit{therm.} (\sim) 10^6</td>
</tr>
<tr>
<td>GELINA (Geel)</td>
<td>B</td>
<td>(5 \cdot 10^4)</td>
<td>800</td>
<td>30</td>
<td>1</td>
<td>\textit{therm.} (\sim) 10^5</td>
</tr>
<tr>
<td>ORELA (Oak Ridge)</td>
<td>USA</td>
<td>(2 \cdot 10^4)</td>
<td>525</td>
<td>40</td>
<td>8</td>
<td>\textit{therm.} (\sim) 10^4</td>
</tr>
</tbody>
</table>

Due to the close collaboration with FZ Karlsruhe FRANZ benefits from technology and hardware transfer concerning the neutron production target, the detector system and shielding materials. For a closer study on this topic we refer to [2].

CONCLUSION

The combination of a high current LINAC and a \(1ns\)-Buncher-System, which was never realized before, will allow for new experiments in various fields of research. The parameters of FRANZ are challenging. Especially the plasma generator, LINAC and the \(^7\text{Li}\)-target system have to stand the high thermal loads. The main challenge with respect to the buncher system is to treat the space charge interaction by careful multiparticle simulations. FRANZ will be the main activity during the next four years within the recently founded Stern-Gerlach-Zentrum (SGZ) at the Frankfurt J.-W. Goethe-University.

REFERENCES

ww-linux.gsi.de/~hoehne/report/cbmstr_public.pdf