Ionenstrahltransport mit Raumladungslinsen

Oliver Meusel

Johann Wolfgang Goethe UNIVERSITÄT FRANKFURT AM MAIN

Nichtneutrales Plasma für die Ionenstrahlfokussierung

Restgasleuchten angeregt durch die eingeschlossene Raumladungswolke

Eingeschlossene Elektronen-wolke

Eingeschlossene Protonen-wolke

Übersicht

- Konzept der Gabor-Linse, ein Historischer Überblick
- Theoretische und numerische Aspekte des Plasmaeinschlusses
- Untersuchung der eingeschlossenen Raumladungswolke
- Strahltransportexperimente mit einem RFQ-Beschleuniger

kurze Raumladungssäule (Fremdionisation).

Experimenteller Aufbau

[Vorläufige Mitteilung¹) aus dem Hochspannungslaboratorium der Technischen Hochschule Berlin²).]

Das kurze Raumladungsfeld einer Hilfsentladung als Sammellinse für Kathodenstrahlen.

Von Bodo von Borries und Ernst Ruska in Berlin.

Mit 3 Abbildungen. (Eingegangen am 22. April 1932.)

Fokussierung eines Elektronenstrahles mit einem Gasentladungsplasma

No. 405E July 19, 1947

NATURE

89

A Space-Charge Lens for the Focusing of Ion Beams

Some time ago I proposed a magnetron of special design as a divergent lens for electron beams¹. It now appears that the same device may become useful as a very powerful concentrating lens for positive ions, particularly for ion beams of extreme energy.

Raumladungslinse mit stabil eingeschlossener Elektronenwolke

Dennis Gabor (1900-1979)

Electrical & Electronic Engineering Department, Imperial College London

IEEE Transactions on Nuclear Science, Vol. NS-26, No. 3, June 1979 PROGRESS IN SPACE CHARGE LENS DEVELOPMENT*

H. W. Lefevre Physics Department, University of Oregon, Eugene, Oregon 97403

Rex Booth Lawrence Livermøre Laboratory, Livermore, California 94550

9th is approximately 18 cm.

Erste Strahltransportexperimente mit Gabor-Linsen

Fig. 4. Current vs voltage characteristic of the nine ring lens after outgassing. The solid line is given by $i = 10^{-6} \exp(V/1320)$.

Analyse der Verlustströme

MEASUREMENTS ON A GABOR LENS FOR NEUTRALIZING AND FOCUSING A 30 KEV PROTON BEAM

J.A.Palkovic* University of Wisconsin, Madison R.Hren, G. Lee, F.E.Mills, C.W. Schmidt, J.Wendt, D.E.Young Fermi National Accelerator Laboratory[†]

Figure 1: Gabor lens with cusped magnetic field

Mit dem ursprünglichen Layout vergleichbare Gabor-Linse

Figure 3: Source emittence: $\alpha = -.77$, $\beta = 0.15$, $\epsilon_{mer} = 0.247$, $\beta = 11$ mA. The projection of the distribution on the z and z' axes are shown. Units are mm and mrad.

Strahltransportmessungen, Abbildungseigenschaften der Linse

Entwicklung von Gabor-Linsen am IAP-Frankfurt

1990

1997

2000

Gabor-Linse für niedrige Strahlenergien (40 keV)

Aufbau der verwendeten Linse

Potential- und Magnetfeldverteilung auf der Achse der Linse

Gabor-Linse für mittlere Strahlenergien (500 keV)

Hochfeld-Gabor-Linse (HGL)

Potential- und Magnetfeldverteilung auf der Achse der Linse

Kräftegleichgewicht in einem radial eingeschlossenen, kalten NNP

Zylindrische homogene Elektronendichteverteilung eingebettet in ein uniformes axiales magnetisches Feld

Radiales Kräftegleichgewicht für einen achsenzentrierten Elektronen-orbit

Kräftegleichgewichts-Gleichung

$$\frac{-m_{\rm e}v_{\rm e,\Theta}^2}{r} = -eE_{\rm r} - ev_{\rm e,\Theta}B_{\rm z}$$

E_r ist durch die Poisson-Gleichung bestimmt:

$$\frac{1}{r}\frac{\partial}{\partial r}rE_{r} = \frac{en_{e}(r)}{\varepsilon_{0}}$$

nach Integration für $0 < r < R_p$ folgt:

$$E_r = \frac{1}{2\varepsilon_0} en_e r$$

$$-\omega_e^2 = \frac{\omega_{pe}^2}{2} - \omega_e \Omega_e$$

Einführung

$$\omega_{e} = \frac{V_{e,\Theta}}{r}$$
 Winkel-
geschwindigkeit
 $\omega_{pe}^{2} = \frac{e^{2}n_{e}}{\varepsilon_{0}m_{e}}$ Plasma-Frequenz
 $\Omega_{e} = \frac{eB_{z}}{m_{e}}$ Zyklotron-Frequenz

Johann Wolfgang 🕵 Goethe

FRANKFURT AM MAIN

UNIVERSI

Lösungen für ω_e

Zwei Lösungen der Winkelgeschwindigkeit

Johann Wolfgang Goethe UNIVERSITÄT FRANKFURT AM MAIN

Trajektorie eines Elektrons für verschiedene Füllgrade

Longitudinaler Einschluss

Potentialdepression durch ein longitudinal eingeschlossenes, kaltes NNP

Potentialdepression durch den Einschluss von Elektronen

 Φ_r ist durch die Poisson-Gleichung bestimmt:

$$-\frac{1}{r}\frac{\partial\Phi_r}{\partial r} - \frac{\partial^2\Phi_r}{\partial r^2} = \frac{en_e(r)}{\varepsilon_0}$$

Integration für $0 < r < R_p$

$$\Phi_r = -\frac{en_e r^2}{4\varepsilon_0}$$

für eine vollständige potential dep $\Phi_{ssion} = -\Phi_r$

Johann Wolfgang 🕵 Goethe

UNIVER

$$\Phi_{anode} = \frac{en_e r^2}{4\varepsilon_0}$$
Einschlusseffizienz
 $\kappa_l = \frac{\Phi_r}{\Phi_{anode}}$

radialer Einschluss

- $\omega_{pe,r} \leq \omega_{pe,l} \quad \forall B_z; \Phi = const.$
- $E_r \leq E_{B_z} E_{Laplace}$
- Diffusion über Feldlinien hinweg

longitudinaler Einschluss

longitudinale Einschlusseffizienz $\kappa_{l} = \frac{\omega_{pe,numerik}}{\omega_{pe,theory}}$

•
$$\omega_{pe,l} \leq \omega_{pe,r} \quad \forall \Phi_A; B_z = const.$$

- Einfluss der Elektrodengeometrie auf ω_{pe}
- Elektronenverluste in Abhängigkeit von T_e

Feldverteilung auf einem numerischen 2D-Gitter

radialer Einschluss unter Berücksichtigung des longitudinalen Einschlusses

Elektronendichte als Funktion von $B_{\rm z}$ und $V_{\rm a}$

$$\omega_{pe} = \omega_{pe,r} = \omega_{pe,l}$$

mit

$$V_A = \omega_{pe,l}^2 \cdot \frac{er_A^2}{4m_e} \quad \text{und} \quad B_z^2 = \omega_{pe,r}^2 \cdot \left(\frac{2m_e}{e}\right)^2$$

$$V_A = \frac{er_A^2}{8m_e} \cdot B_z^2$$

$$\omega_{pe,r} \leq \omega_{pe,l} \quad \forall \mathbf{B}_{\mathbf{z}}; V_{\mathbf{A}} = konst.$$

Johann Wolfgang Goethe UNIVERSITÄT FRANKFURT AM MAIN

Einfluss der externen elektomagnetischen Felder auf den radialen Elektroneneinschluss

	0 kV/m 108 kV/m		
r =60 mm			
z = 216 mm			

Elektrisches Feld als Funktion von r und z im Inneren der Gabor-Linse

$$E_r \le E_{B_z} - E_{Laplace}$$

Elektrisches Feld als Funktion von r für z = 108 mm

Numerische Simulation

Longitudinale Elektronenverluste als Funktion der Plasmatemperatur T_e

$$\rho_e(z, r = const) = \rho_e(z = \Phi_{\max}, r = const) \cdot \exp\left[-\frac{e\Delta\Phi(z, r = const)}{k_b \cdot T_e}\right]$$

Elektronendichteverteilung im Potential $\Phi_A(z)$ für verschiedene Elektronentemperaturen

Produktion des NNP

Produktionsmechanismen für die Linsenelektronen

Elektronendichte als Funktion der Zeit für verschiedene Produktionsmechanismen

$\gamma + RGA \rightarrow RGI + e^- + \gamma'$	Production:	1 E6 m ⁻³ s ⁻¹
$e^- + RGA \rightarrow RGI + 2e^-$	3,8 E-21 m ²	e ⁻ U = 100 eV
$RGI + RGA \rightarrow 2RGI + e^{-}$	2 E-21 m ²	$He^+ U = 3 \ keV$
$BI + RGA \rightarrow BI + RGI + e^{-}$	8 E-21 m ²	$He^+ U = 10 \ keV$

Linsenparameter:
• $B_z = 0,046T$
• $\Phi_A = 25 \text{ kV}$
• p = 2e-7 mbar Helium

Eigenschaften des NNP

Vergleich mit anderen Plasmen

Plasmadiagramm mit dem in einer Gabor-Linse einmgschlossenen NNP

Johann Wolfgang 🙀 Goethe UNIVERSITÄT FRANKFURT AM MAIN

Untersuchung des nichtneutralen Plasmas

einige Methoden für die Diagnostik der Plasmaparameter

- HF-Sonde
- Energiespektroskopie der Verlustelektronen

und Restgasionen

• Ionenstrahltransport

Untersuchung des Restgasleuchtens

experimenteller Aufbau

1002 001 B = 0,015 T U = 2000 V $1002 \ 002 \ B = 0.015 \ T \ U = 3000 \ V$ 1002_003 B = 0,015 T U = 4000 V $1002 \ 004 \ B = 0,015 \ T \ U = 5000 \ V$

Messung der Leuchtdichte als Funktion des Anodenpotentials V_A

Untersuchung des Restgasleuchtens

normierte Elektronendichteverteilung (Simulation) und gemessene Leuchtdichteverteilung als Funktion der Linsenparameter

> Johann Wolfgang Goethe UNIVERSITÄT FRANKFURT AM MAIN

Untersuchung des Restgasleuchtens

optische Spektroskopie

experimenteller Aufbau zur optischen Spektroskopie des Restgasleuchtens

Optische Spektroskopie des Restgasleuchtens

CCD - Kamerabild

Leuchtdichteintensität als Funktion der Wellenlänge

mittlere kinetische Energie der Elektronen als Funktion des Anodenpotentials (rot)

Johann Wolfgang Goethe UNIVERSITÄT FRANKFURT AM MAIN

Strahltransportexperimente

schematische Darstellung des Injektors

Beschleunigerlabor am IAP

Strahltransportexperimente

Ionenstrahlerzeugung und Extraktion

Johann Wolfgang Goethe UNIVERSITÄT FRANKFURT AM MAIN

Strahlanpassung im Extraktionssystem

Numerisch berechnete Strahlanpassung

Strahldiagnose - Emittanzmessung

Schlitz-Gitter-Emittanzmessanlage

MAMI-Seminar, IKPH, Johannes Gutenberg-Universität, Mainz

Emittanzmessanlage

Ionenstrahlerzeugung und Extraktion

Gemessene Phasenraumverteilungen für verschiedene Plasmadichten in der Ionenquelle bei einer Beschleunigungsspannung von $U_{ex} = 10 \text{ kV}$

Johann Wolfgang Goethe UNIVERSITÄT FRANKFURT AM MAIN

Niederenergetischer Strahltransport

Low Energy Beam Transport - LEBT

experimenteller Aufbau des Transportkanals

LEBT-System mit Ionenquelle und RFQ

Niederenergetischer Strahltransport

Messung der Phasenraumverteilung – Emittanz

 $\epsilon_{\text{rms,norm,100\%}} = 0,043\pi mmrad$ $\varepsilon_{\text{rms,norm, 100\%}} = 0,039 \ \pi \text{mmmrad}$ 100 100 50 50 $B_{z} = 6,6 \text{ mT}$ / mrad x' / mrad 0 $\Phi_{\rm A} = 1,85 \; \rm kV$, x 50 50 _004TK^4 2204_011 -20 -10 0 10 -10 10 20 -20 0 20 x / mm x / mm

> gemessene (links) und numerisch bestimmte (rechts) Phasenraumverteilung, $W_b = 14$ keV, I = 11 mA

> > Johann Wolfgang Goethe UNIVERSITÄT FRANKFURT AM MAIN

Niederenergetischer Strahltransport

Messung der Phasenraumverteilung – Emittanz

 $\varepsilon_{\text{rms,norm, 100\%}} = 0,078\pi\text{mmmrad}$ $\epsilon_{\text{rms,norm,100\%}} = 0,036\pi mmrad$ 100 100 muluin 50 50 / mrad / mrad 0 ,× ,× 50 50 0111_003 _004TK95 -100-..... 10 -20 -10 0 10 20 -20 -10 0 20 x / mm x / mm

 $B_z = 7,7 \text{ mT}$ $\Phi_A = 2,6 \text{ kV}$

gemessene (links) und numerisch bestimmte (rechts) Phasenraumverteilung, $W_b = 14$ keV, I = 11 mA

> Johann Wolfgang Goethe UNIVERSITÄT FRANKFURT AM MAIN

Strahltransportexperimente

Vergleich zwischen theoretischen, numerischen und experimentellen Ergebnissen

$$\frac{1}{f} = \frac{\Delta r'}{r_0} = k^2 \cdot l = \frac{n_e e}{4\varepsilon_0 W_B}$$

Linse 1	$n_{e,max} [m^{-3}]$	$n_{e} [m^{-3}]$	Linse 2	$n_{e,max} [m^{-3}]$	n _e [m ⁻³]
radial enclosure	2.1E+14	2.1E+14	radial enclosure	2.9E+14	2.9E+14
longitudinal enclosure	1.6E+14	1.6E+14	longitudinal enclosure	2.3E+14	2.3E+14
Simulation	1.5E+14 (71%/93%)	1.0E+14 (48%/63%)	Simulation	2.1E+14 (72%/90%)	1.4E+14 (49%/61%)
Measurement		7.9E+13 (38%/49%)	Measurement		1.4E+14 (49%/61%)

Ergebnisse der Strahltransportexperimente - LEBT

experimentell bestimmter Füllgrad als Funktion der Linsenparameter

Abbildungsfehler ausgedrückt durch das Emittanzwachstum als Funktion der Linsenparameter

Strahlbeschleunigung durch den RFQ

Schematischer Aufbau des Resonators mit modulierten Elektroden

Installierte Elektroden und Einkopplung

Strahlbeschleunigung durch den RFQ

nur für die Design-Leistung im Resonator ist eine Beschleunigung des Ionenstrahles möglich

Energiespektrum des Ionenstrahles nach dem RFQ

Johann Wolfgang 🙀 Goethe UNIVERSITÄT FRANKFURT AM MAIN

Strahltransportexperimente mit der Hochfeld-Gabor-Linse

schematische Darstellung des Transportkanals und der Diagnose

Strahlfokussierung mit der HGL

Gemessene Emittanzen mit und ohne Fokussierung durch die HGL in der xund y-Ebene Messung der Phasenraumverteilung

Lens	n _{e,max} [m ⁻³]	n _e [m ⁻³]	
radial enclosure	1,02E+16	1,02E+16	
longitudinal enclosure	6,14E+15	6,14E+15	
Simulation	5,7E+14 (5,6% / 9,3%)	3,5E+14 (3,4% / 5,7%)	
Measurement		2,6E+15 (25,5% / 42,3%)	

Ergebnisse der Strahltransportexperimente nach dem RFQ

experimentell bestimmter Füllgrad als Funktion der Linsenparameter

Abbildungsfehler ausgedrückt durch das Emittanzwachstum als Funktion der Linsenparameter

Zusammenfassung

• die theoretische Beschreibung des Plasmaeinschlusses konnte durch weitere Randbedingungen in der numerischen Simulation erweitert werden

• die experimentelle Bestimmung der Eigenschaften des eingeschlossenen NNP ermöglichen eine gezielte Einflussnahme auf das Linsendesign

• die Strahltransportexperimente zeigen gute optische Eigenschaften dieses Linsentyps

• Offene Fragen wie z.B. die Möglichkeit der Raumladungskompensation von Mikrobunchen muss noch untersucht werden

Offene Fragen zu Raumladungskompensation

Möglichkeit eines Raumladungskompensierten Strahltransports?

Raumladungskompensation eines Mikrobunches

Johann Wolfgang Roethe UNIVERSITÄT FRANKFURT AM MAIN