05.03.2007

Design of a Low-Energy Chopper System for FRANZ

Christoph Wiesner

JOHANN WOLFGANG

UNIVERSITÄT

FRANKFURT AM MAIN

Frankfurter Neutronenquelle am Stern-Gerlach-Zentrum

http://franz.physik.uni-frankfurt.de

NATIONAL CHOPPER CLUB

Contents

- Introduction
- Design and Layout of the Chopper
- Multi-Particle Simulation LEBT
- Outlook

JOHANN WOLFGANG

FRANKFURT AM MAIN

UNIVERS

Frankfurter Neutronenquelle am Stern-Gerlach-Zentrum

http://franz.physik.uni-frankfurt.de

Function of the Chopper

- Input: 150 mA cw proton beam, 120 keV
- Output: 50-100 ns bunches, repetition rate f = 250 kHz

Possible Choppers Types

Electrical Chopper

• Magnetic Chopper with Helmholtz Coils

• Dipole System

Functional Principle of the Dipole System

1) Introduction 2) Des

4) Outlook

FRANKFURT AM MAIN

Functional Principle of the Dipole System

Layout Dipole System

Frankfurter Neutronenquelle am Stern-Gerlach-Zentrum

http://franz.physik.uni-frankfurt.de

4) Outlook

JOHANN WOLFGANG	GOETHE
UNIVERSIT	TÄT
Frankfurt am m	AAIN

1) Introduction

Frankfurter Neutronenquelle am Stern-Gerlach-Zentrum

2) Design and Layout

3) Simulation

http://franz.physik.uni-frankfurt.de

4) Outlook

intp.//italiz.physik.

1) Introduction

4) Outlook

FRANKFURT AM MAIN

- Divergence Angle: 80 mrad
- Homogeneous Distribution (Assumed)

				N67
Frankfurter Neutronenquelle am Stern-Gerlach-Zentrum		http://franz.physik.uni-frankfurt.de		UNIVERSITÄT Frankfurt am main
1) Introduction	tion 2) Design and Layout 3) Simulation 4) Outlook			

JOHANN WOLFGANG

4) Outlook

Simulation Dipole System

Phase Distribution behind Slit x-x' B_{max} (Dipole)= 0.2 T 80 60 Solenoid 3 Solenoid 4 Solenoid 1 Solenoid 2 60 40 50 20 Chopper Strahlradius r [mm] 40 ×' [mm] 0 30 -20 20 10 -40 0 --60 500 1000 1500 2000 2500 3000 3500 0 z [mm] Dipol ausgeschaltet -80 Dip ol eing eschaltet -100 -20 -10 0 10 20 30 -40 -30 40 x [mm]

				JOHANN WOLFGANG 💱 GOETHE
Frankfurter Neutronenquelle am Stern-Gerlach-Zentrum		http://franz.physik.uni-frankfurt.de		UNIVERSITÄT
1) Introduction	2) Design and Layout	3) Simulation	4) Outlook	FRANKFURT AM MAIN

Chopper creates different beam distribution (depending on direction of Magnetic Field).

Phase Distribution in front of RFQ

Outlook: To Do?

Multi-Particle Simulations

- Beam Dynamics in LEBT Variation of Parameters
- Beam Dynamics in Chopper
 Variation of Parameters
- Emittance Growth Estimations
- Simulations for H_2^+ and H_3^+

Layout

- Fix Geometry of Chopper
- Begin Construction
 Vacuum Chamber

Technical Implementation

• Choose Type of Dipole

JOHANN WOLFGANG

FRANKFURT AM MAIN

- Choose Magnetic Material
- Design Electronic Control

Frankfurter Neutronenquelle am Stern-Gerlach-Zentrum

http://franz.physik.uni-frankfurt.de

3) Simulation