Beam transport experiments in toroidal magnetic field

Ninad Joshi Riezlern 2009

Contents

- Experimental Setup
- Observations and Measurements
- Comparison with simulations
- Further experiments

Experimental Setup

Ion beams

Solenoid

No. of winding	280
Maximum Magnetic on axis field	0.72 T
Maximum Voltage and Current	32.5 V, 360 A
Length	$250 \ mm$
diameter of aperture	$106\ mm$
Magnetic Shielding	$\operatorname{present}$

Phase-Space measurements from source Simulations transport through solenoid (LINTRA) Comparison with experiments Calculation of phase-space for injection into toroid

Toroidal magnetic field

• 200mm 135 mm Input plane ■ C — 1/r

radial distance (m)

0.05

0.10

Proton beam transport in curved fields

- Code for beam transport
- PIC subroutine
- Real field configuration, measured phase space distribution
- Up to 10⁶ particles can be simulated on the CSC cluster
- 50*50*180 Grid points

Example : proton 10keV into 0.6 T vertical drift ~15 mm

Composite beam transport

Optical diagnostic

- Phosphor screen P20
- max 1 W/cm²
- Repeller electrode
- 1.2kV max
- Digital camera (8-bit)
- Position of screen is in fringe field region

Limitations on optics

- Camera to be operated in high magnetidc field
- Magnetic shielding required
- Low light conversion efficiency
- Secondary electron production

Comparision with simulation

Example : composite proton beam at @ 8keV

Beam Guidance

Electrons

Proton beam

Electron beam 3kev

Secondary electrons

Success and failure

- In the case of composite proton beam the simulation results are in well agreement with experiments
- Helium beam can not be compared well as in most cases it hits wall or repeller electrode producing electons.
- Space charge effects observed still to be compared
- Necessity of measurements inside field

Example : He-beam @ 8 keV into B=0.5T

80

For storage ring

- Storage ring for proton
- Magnetic surface due to 3d geometry
- Two beam experiments with two segments
- Electric kicker with extra coil

Experimental setup

B = 0.6 T, W = 10 keV, proton beam
For ring 5T, 150 keV, E= 1.2MV/m required

Kicker and multiturn type phase-space filling

Concluding remarks

- Beam transport experiments were performed to compare simulation tools and investigate drift dynamics
- Further experiment to investigate coupling properties of two magnetic segment are planned with different geometry and extra coil to control ripple in the fields
- Injection experiments are designed
- For experiments more improvement is needed for detection systems
- Mass separator may be recommended to avoid unwanted beam fractions
- Effect of electrons can be studied in detail

The End

• Thank you