Magnetostatischer Speicherring mit Stellarator-Feldkonfiguration

M. Droba J.W.Goethe Universität Frankfurt am Main

Unter Mitarbeit von: N.Joshi, P. Nonn, O. Meusel, K. Schulte, U.Ratzinger

Hochstromspeicherring (MSR)

- Speicherringe mit longitudinalem Magnetfeld (W~100 AkeV – 1AMeV)
- Fusionsquerschnitte
- Mehrteilchenreaktionen Multispezies
- Sekundärteilchenspeicherung
- Multi-Ionisationsprozesse von leichten Atomen bei Wechselwirkung mit intensiven niederenergetischen Protonenstrahlen
- Raumladungskompensation Restgaselektronen

Elektronenstrahl

• Strahlkühlung, Kristalline-Strahlen

¹¹B+p Reaction

Relaxationsprozesse – Strahl zur NNP

Figure-8 Hochstromspeicherring

16.03.2010

GOETHE

UNIVERSITÄT

Zyklotronfrequenz $\omega_c [s^{-1}]$ @5T	$4.8 \cdot 10^8$
Brillouin-Limit n _B [m ⁻³]	$6.6 \cdot 10^{16}$
Strahlradius a [m]	>0.02
Debye-Länge [m]	3.10-4
ExB Rotationsfrequenz [s]	$5.2 \cdot 10^{-10}$
UHV (n ~ 10^{12} m ⁻³ ~ $4 \cdot 10^{-11}$ hPa) Stoßfrequenz $\tau_c[s]$	12.5
NNP Einschlusszeit in toroidalen Magnetfeldern (Crooks 1994)	$\tau \approx \tau_c \cdot (R/\lambda_D)^2$
NNP Einschlusszeiten auf magnetischen Flächen (Pedersen 2003)	$\tau \approx \tau_c \cdot (a/\lambda_D)^4$

5

Simulationsprogramme

- Magnetfeld Biot-Savart solver (Predictor-Corrector method, Field-line integration –1D information)
- Frequenzdekomposition FFT (1D => 2D)
- Generierung von numerischen Gitter in Clebsch-Koordinaten

ψ<0,1>, θ<0,2π>, ξ<0,2π>

- Poissongleichung (PIC Particle in cell)
- Bewegungsgleichungen in Guiding-center-Koordinaten

Parallele Rechnercluster CSC (Centre for Scientific Computing) http://www.csc.uni-frankfurt.de

Bis zu 60 Prozessoren, 10Mio Makroteilchen

6

F8SR – Strahldynamik in starken gekoppelten Magnetfeldern

Strahlenergie: $W_b = 150 \text{keV}$ Strahlstrom: I = 10AUmlaufzeit: $t = 2\mu s$ Gespeicherte Energie und Peakleistung $E = 3J \implies P_{\text{peak}} = 1,5MW$

- Rot Strahl parallel zum B-Feld
- Blau Strahl antiparallel zum B-Feld

Injektion

Toroidaler Strahltransport - skaliertes Experiment

	Strahlenergie	2 – 15 keV
	Strahlstrom	0 – 5 mA
	Ionen	$He^+,\ p,H_2^+,H_3^+$
	B max	0,6 T
0	Krümmungs- winkel	30°
	Krümmungs- radius	1,3 m

Optische Strahldiagnose

Aufbau der Sonde

Länge: ca. 220 mm Durchmesser: 180 mm Gewicht: ca. 3 kg Material: Aluminium, PVC

Injektionsexperiment

Ausblick

- Untersuchung von Raumladungskompensation im toroidalen Strahltransport
- Untersuchung von Strahlinstabilitäten
- Aufbau von Injektionsexperiment
- Weiterentwicklung der optischen Strahldiagnose

11