

Bunch Compressor for Intense Proton Beams

L.P. Chau, M. Droba, O. Meusel, D. Noll, U. Ratzinger, C. Wiesner <u>chau@iap.uni-frankfurt.de</u>

LINAC10, Tsukuba, Japan 2010/09/16

NZ (Frankfurt Neutron Source at the Stern-Gerlach Zentrum) / NNP (Non Neutral Plasma Group) / IAP (Institute for Applied Physics)

LINAC10, Tsukuba, Japan, September 16th, 2010

○ Frankfurt Neutron Source FRANZ

• Bunch Compressor Concepts

○ Single Bunch Beam Dynamics

Magnet Design

○ Final Focus – Effects of Space Charge Forces

erlach Zentrum) / NNP (Non Neutral Plasma Group) / IAP (Institute for Applied Physics)

o Frankfurt Neutron Source FRANZ

Bunch Compressor Concepts

○ Single Bunch Beam Dynamics

Magnet Design

○ Final Focus – Effects of Space Charge Forces

RANZ (Frankfurt Neutron Source at the Stern-Gerlach Zentrum) / NNP (Non Neutral Plasma Group) / IAP (Institute for Applied Physics)

Frankfurt Neutron Source FRANZ

- **FRANZ:** High current LINAC combined with 1ns-bunch-compressor
- Test stand: Novel accelerator technology, high current beam diagnostics
- Applications: \Rightarrow Astrophysical (n, γ)-cross sections, TOF \Rightarrow Activation measurements, detector developments \Rightarrow Material sciences

E×B chopper

High current applications:

=> Where are the limits of conventional accelerator technologies?
=> Are there alternative concepts?

- Beam forming at high rep. rates: E×B chopper (C. Wiesner ,**THP071**)
- High current cw RFQ (A. Schempp, **TUP039**)
- Coupled RFQ-IH combination
- DTL concepts: IH, CH, Multi-Aperture Reb. (U. Ratzinger, H. Podlech, D. Noll: **MOP101**)
- Alternative beam dynamics: KONUS (U. Ratzinger)
- Alternative beam focusing device: Space Charge Lens (K. Schulte, O. Meusel, **MOP102**)
- Non destructive diagnostics: beam tomography (O. Meusel)

FRANZ: Bunch Compressor - Requirements

Requirements at the Final Focus

6

GOETHE

UNIVERSI

FRANZ (Frankfurt Neutron Source at the Stern-Gerlach Zentrum) / NNP (Non Neutral Plasma Group) / IAP (Institute for Applied Physics)

LINAC10, Tsukuba, Japan, September 16th, 2010

o Frankfurt Neutron Source FRANZ

O Bunch Compressor Concepts

○ Single Bunch Beam Dynamics

Magnet Design

○ Final Focus – Effects of Space Charge Forces

RANZ (Frankfurt Neutron Source at the Stern-Gerlach Zentrum) / NNP (Non Neutral Plasma Group) / IAP (Institute for Applied Physics)

Bunch Compressor Concepts

8

GOETHE

UNIVERSI

FRANZ (Frankfurt Neutron Source at the Stern-Gerlach Zentrum) / NNP (Non Neutral Plasma Group) / IAP (Institute for Applied Physics)

for FARR LINAC10, Tsukuba, Japan, September 16th, 2010

Bunch Compressor Concepts

Path length differences

RANZ (Frankfurt Neutron Source at the Stern-Gerlach Zentrum) / NNP (Non Neutral Plasma Group) / IAP (Institute for Applied Physics)

ARMADILLO – <u>Ar</u>c <u>Ma</u>gnetic <u>Di</u>pole Chicane with <u>Large</u> Aperture <u>Lo</u>ngitudinally Focusing Cavities

o Frankfurt Neutron Source FRANZ

Bunch Compressor Concepts

○ Single Bunch Beam Dynamics

Magnet Design

○ Final Focus – Effects of Space Charge Forces

RANZ (Frankfurt Neutron Source at the Stern-Gerlach Zentrum) / NNP (Non Neutral Plasma Group) / IAP (Institute for Applied Physics)

Single Bunch Beam Dynamics: 95% Envelope

UNIVERS

FAIR

ource at the Stern-Gerlach Zentrum) / NNP (Non Neutral Plasma Group) / IAP (Institute for Applied Physics)

UNIVE

• Beam dynamics solutions for all bunches can be found by manual optimization!

LINAC10, Tsukuba, Japan, September 16th, 2010

• Beam dynamics solutions for all bunches can be found by manual optimization!

• Smarter solution was proposed by *D. Noll*: using "Particle Swarm Optimization" (PSO)^{*}

^{*}[J. Kennedy, R. Eberhart, 1995, Proceedings of IEEE International Conference on Neural Networks. IV. pp. 19421948.]

• Cavity design: Multi-Aperture + Final Focus Rebuncher \Rightarrow **D. Noll, MOP101**

Frankfurt Neutron Source FRANZ

• Bunch Compressor Concepts

• Single Bunch Beam Dynamics

Magnet Design

○ Final Focus – Effects of Space Charge Forces

rn-Gerlach Zentrum) / NNP (Non Neutral Plasma Group) / IAP (Institute for Applied Physics)

UNIVE

- Beam dynamics solutions for all bunches can be found by manual optimization!
- Is it possible to design a magnet with the required parameters?

Magnet Design: Improvement for Beam Dynamics

- Particle in Cell (PIC) transport with realistic fields compared to 1st order paraxial approach with given fringe field integral and edge angles.
- Ideal traj. \equiv const. fields + hard edges.
- Convergence to the ideal trajectory.
- Slope and core of distributions fit very well.
- Aberration caused by field gradients near shimmed edges.

 \Rightarrow Single bunch beam dynamics with 1st order paraxial approach is good enough for geometrical design.

 \Rightarrow Magnet design is possible!

LINAC10, Tsukuba, Japan, September 16th, 2010

Concepts for Main Dipole

- global gradient => longitudinal focusing of the macro bunches
- individual reverse gradient => horizontal focusing of the micro bunches
- individual edge angles => vertical focusing of the micro bunches

FRANZ (Frankfurt Neutron Source at the Stern-Gerlach Zentrum) / NNP (Non Neutral Plasma Group) / IAP (Institute for Applied Physics)

LINAC10, Tsukuba, Japan, September 16th, 2010

Frankfurt Neutron Source FRANZ

• Bunch Compressor Concepts

○ Single Bunch Beam Dynamics

Magnet Design

○ Final Focus – Effects of Space Charge Forces

-Gerlach Zentrum) / NNP (Non Neutral Plasma Group) / IAP (Institute for Applied Physics)

-10

-15

-80

- Merging along last 300 mm to the final focus: realistic distributions from single bunch beam dynamics.
- Full Space Charge Forces (FSCF, red + purple).
- Space Charge Compensated transport (SCC, blue), e.g. provided by Space Charge Lens => K. Schulte, **MOP102.**

-80

-15

-10

phi / [deg]

20

GO UNIV

z/[mm]

5

10

15

20

40

60

80

-20

40

0

 \times [mm]

GO

UNIV

15

5

x/[mm]

n

• Merging along last 300 mm to the final focus: realistic distributions from single bunch beam dynamics.

300

200

100

-300

40

20

0

-20

-40

-15

-10

-5

yp / [mrad]

[pe.uu] / dx -100 -200 index= 50

- Full Space Charge Forces (FSCF, red + purple).
- Space Charge Compensated transport (SCC, blue), e.g. provided by Space Charge Lens => K. Schulte, **MOP102.**

- Merging along last 300 mm to the final focus: realistic distributions from single bunch beam dynamics.
- Full Space Charge Forces (FSCF, red + purple).
- Space Charge Compensated transport (SCC, blue), e.g. provided by Space Charge Lens => K. Schulte, **MOP102.**

GOI

UNIV

- Merging along last 300 mm to the final focus: realistic distributions from single bunch beam dynamics.
- Full Space Charge Forces (FSCF, red + purple).

40

20

40

-80

-20

 \times [mm]

80

• Space Charge Compensated transport (SCC, blue), e.g. provided by Space Charge Lens => K. Schulte, **MOP102.**

-15

phi / [deg]

300

15

10

z/[mm]

-10

- Merging along last 300 mm to the final focus: realistic distributions from single bunch beam dynamics.
- Full Space Charge Forces (FSCF, red + purple).
- Space Charge Compensated transport (SCC, blue), e.g. provided by Space Charge Lens => K. Schulte, **MOP102.**

200

100

ndex= 200

• Merging along last 300 mm to the final focus: realistic distributions from single bunch beam dynamics.

300

200

ndex= 250

- Full Space Charge Forces (FSCF, red + purple).
- Space Charge Compensated transport (SCC, blue), e.g. provided by Space Charge Lens => K. Schulte, **MOP102.**

5

10

y / [mm]

- Merging along last 300 mm to the final focus: realistic distributions from single bunch beam dynamics.
- Full Space Charge Forces (FSCF, red + purple).
- Space Charge Compensated transport (SCC, blue), e.g. provided by Space Charge Lens => K. Schulte, **MOP102.**

300

ndex= 300

26

LINAC10, Tsukuba, Japan, September 16th, 2010

- Merging along last 300 mm to the final focus: realistic distributions from single bunch beam dynamics.
- Full Space Charge Forces (FSCF, red + purple).

Space Charge Compensated transport (SCC, blue),
 e.g. provided by Space Charge Lens => K. Schulte, MOP102.

27

GOI

UNIVE

LINAC10, Tsukuba, Japan, September 16th, 2010

- ARMADILLO bunch compressor is presented.
- Geometrical concept is principally able to reach a long. compression ratio of 45.
- Single bunch and multi bunch beam dynamics results, even with full space charge forces, are promising to satisfy the requirements.
- Preliminary and **improved magnet designs** are proposed.
- Optimization of hardware and complementary code has to be continued.
- Front to end simulations with realistic fields have to be done.
- Detailed error studies have to be done.

Thank you for your attention

on behalf of

M. Droba, O. Meusel, D. Noll, U. Ratzinger, C. Wiesner

IAP, Goethe University Frankfurt

Acknowledgment:

Franz Käppeler (FZK) R. Reifarth (GSI / U. Frankfurt) M. Heil (GSI)

H. Klein, H. Podlech, A. Schempp, S. Schmidt, K. Schulte

IAP, Goethe University Frankfurt

LINAC-AGhttp://linac.physik.uni-frankfurt.deAG-Schempphttp://iaprfq.physik.uni-frankfurt.deNNP-AGhttp://nnp.physik.uni-frankfurt.de

29

FRANZ (Frankfurt Neutron Source at the Stern-Gerlach Zentrum) / NNP (Non Neutral Plasma Group) / IAP (Institute for Applied Physics)

LINAC10, Tsukuba, Japan, September 16th, 201