Bunch Compressor for Intense Proton Beams

chau@iap.uni-frankfurt.de

LINAC10, Tsukuba, Japan
2010/09/16
Outlines:

- Frankfurt Neutron Source FRANZ
- Bunch Compressor Concepts
- Single Bunch Beam Dynamics
- Magnet Design
- Final Focus – Effects of Space Charge Forces
Outlines:

- Frankfurt Neutron Source FRANZ
- Bunch Compressor Concepts
- Single Bunch Beam Dynamics
- Magnet Design
- Final Focus – Effects of Space Charge Forces
FRANZ: High current LINAC combined with 1ns-bunch-compressor

Test stand: Novel accelerator technology, high current beam diagnostics

Applications: ⇒ Astrophysical \((n, \gamma)\)-cross sections, TOF
⇒ Activation measurements, detector developments
⇒ Material sciences
High current applications:
=> Where are the limits of conventional accelerator technologies?
=> Are there alternative concepts?

• Beam forming at high rep. rates: $E \times B$ chopper (C. Wiesner, THP071)

• High current cw RFQ (A. Schempp, TUP039)

• Coupled RFQ-IH combination

• Alternative beam dynamics: KONUS (U. Ratzinger)

• Alternative beam focusing device: Space Charge Lens (K. Schulte, O. Meusel, MOP102)

• Non destructive diagnostics: beam tomography (O. Meusel)
FRANZ: Bunch Compressor - Requirements

Volume Type Ion Source

- 150 kV Terminal

Diagnostics chambers

Steerer

- Chopper
- $f_{cp} = 250$ kHz
- $\Delta t = 50-100$ ns

Macro pulse forming

Micro pulse forming

RFQ

f_b = 175 MHz

Rebuncher

Kicker

- $f = 5$ MHz

Bunch Compressor

Li Target for Activation Mode

Multiaperture Rebuncher

Li Target for Compressor Mode

FRANZ: Bunch Compressor - Requirements

FRANZ (Frankfurt Neutron Source at the Stern-Gerlach Zentrum) / NNP (Non Neutral Plasma Group) / IAP (Institute for Applied Physics)

LINAC10, Tsukuba, Japan, September 16th, 2010

Pulse Structure at the Entrance

- **175MHz-DTL**
 - rep.rate = 250kHz
 - $E \sim 2.0$ MeV
 - $I = 150$ mA

~4 \mu s

~100 ns

Macro Bunch

Micro Bunch

Requirements at the Final Focus

- $R < 10$ mm
- $\Delta W/W < \pm 5\%$
- $\Delta T = 50-100$ ns $\Rightarrow \Delta T \approx 1$ ns
Outlines:

- Frankfurt Neutron Source FRANZ
- Bunch Compressor Concepts
- Single Bunch Beam Dynamics
- Magnet Design
- Final Focus – Effects of Space Charge Forces
L ≈ 4 m => ΔW ≈ ±500keV

Large energy spread (RF-cavity)

Negligible energy spread (RF-deflector)
Mobley-Buncher: (μA-Proton Beams)

Kicker
→ separation of the micro bunches

Bending system (1 Dipole)
→ “weak” focusing
→ path length differences
→ longitudinal compression

Negligible energy spread (RF-deflector)
ARMADILLO – **Arc Magnetic Dipole Chicane with Large Aperture Longitudinally Focusing Cavities**

Mobley-Buncher: (μA-Proton Beams)

- **Kicker**
 → separation of the micro bunches

- **Bending system (1 Dipole)**
 → “weak” focusing
 → path length differences
 → longitudinal compression

Improvements for 150mA Proton Beams:

- **2 main dipoles (gradient)**
 → more parameters for beam dynamics

- **2 auxiliary dipoles (homogeneous)**
 → linear separation of the trajectories
 → momentum exchange in trans. plane

- **2 rebuncher cavities**
 → longitudinal beam dynamics

LINAC

\[(9 \times 5.7\text{ns} \times 150\text{mA}) @ 250\text{kHz} \]

Li-Target

\[(1\text{ns} \times 7.7\text{A}) @ 250\text{kHz} \]
Outlines:

- Frankfurt Neutron Source FRANZ
- Bunch Compressor Concepts
- Single Bunch Beam Dynamics
- Magnet Design
- Final Focus – Effects of Space Charge Forces
Single Bunch Beam Dynamics: 95% Envelope

IH + CH

dip1

dip2

quadrupole triplets

Multi-Aperture Rebuncher

Final Focus Rebuncher

LORASR
Beam dynamics solutions for all bunches can be found by manual optimization!
• Beam dynamics solutions for all bunches can be found by manual optimization!

• Smarter solution was proposed by D. Noll: using “Particle Swarm Optimization” (PSO)*

* [J. Kennedy, R. Eberhart, 1995, Proceedings of IEEE International Conference on Neural Networks. IV. pp. 19421948.]

• Cavity design: Multi-Aperture + Final Focus Rebuncher ⇒ D. Noll, MOP101
Outlines:

- Frankfurt Neutron Source FRANZ
- Bunch Compressor Concepts
- Single Bunch Beam Dynamics
- Magnet Design
- Final Focus – Effects of Space Charge Forces
• Beam dynamics solutions for all bunches can be found by manual optimization!

• Is it possible to design a magnet with the required parameters?
Magnet Design: Improvement for Beam Dynamics

- Particle in Cell (PIC) transport with realistic fields compared to 1st order paraxial approach with given fringe field integral and edge angles.

- Ideal traj. \equiv const. fields + hard edges.

- Convergence to the ideal trajectory.

- Slope and core of distributions fit very well.

- Aberration caused by field gradients near shimmed edges.

\Rightarrow Single bunch beam dynamics with 1st order paraxial approach is good enough for geometrical design.

\Rightarrow Magnet design is possible!
Concepts for Main Dipole

- modular pole face
- global gradient => longitudinal focusing of the macro bunches
- individual reverse gradient => horizontal focusing of the micro bunches
- individual edge angles => vertical focusing of the micro bunches
Outlines:

- Frankfurt Neutron Source FRANZ
- Bunch Compressor Concepts
- Single Bunch Beam Dynamics
- Magnet Design
- Final Focus – Effects of Space Charge Forces
Multi Bunch Beam Dynamics: Effects of Space Charge

- Merging along **last 300 mm to the final focus**: realistic distributions from single bunch beam dynamics.
- Full Space Charge Forces (FSCF, red + purple).
- Space Charge Compensated transport (SCC, blue), e.g. provided by Space Charge Lens => K. Schulte, MOP102.
Multi Bunch Beam Dynamics: Effects of Space Charge

- Merging along **last 300 mm to the final focus**: realistic distributions from single bunch beam dynamics.
- Full Space Charge Forces (FSCF, red + purple).
- Space Charge Compensated transport (SCC, blue), e.g. provided by Space Charge Lens => K. Schulte, MOP102.
Multi Bunch Beam Dynamics: Effects of Space Charge

- Merging along **last 300 mm to the final focus**: realistic distributions from single bunch beam dynamics.
- Full Space Charge Forces (FSCF, red + purple).
- Space Charge Compensated transport (SCC, blue),
 e.g. provided by Space Charge Lens => K. Schulte, MOP102.
Multi Bunch Beam Dynamics: Effects of Space Charge

- Merging along **last 300 mm to the final focus**: realistic distributions from single bunch beam dynamics.
- Full Space Charge Forces (FSCF, red + purple).
- Space Charge Compensated transport (SCC, blue), e.g. provided by Space Charge Lens \(\Rightarrow \) K. Schulte, MOP102.
Multi Bunch Beam Dynamics: Effects of Space Charge

- Merging along **last 300 mm to the final focus**: realistic distributions from single bunch beam dynamics.
- Full Space Charge Forces (FSCF, red + purple).
- Space Charge Compensated transport (SCC, blue), e.g. provided by Space Charge Lens => K. Schulte, MOP102.
Multi Bunch Beam Dynamics: Effects of Space Charge

- Merging along last 300 mm to the final focus: realistic distributions from single bunch beam dynamics.
- Full Space Charge Forces (FSCF, red + purple).
- Space Charge Compensated transport (SCC, blue), e.g. provided by Space Charge Lens => K. Schulte, MOP102.
Multi Bunch Beam Dynamics: Effects of Space Charge

- Merging along **last 300 mm to the final focus**: realistic distributions from single bunch beam dynamics.
- Full Space Charge Forces (FSCF, red + purple).
- Space Charge Compensated transport (SCC, blue), e.g. provided by Space Charge Lens => K. Schulte, MOP102.

Beam spot at the target
Multi Bunch Beam Dynamics: Effects of Space Charge

- Merging along last 300 mm to the final focus: realistic distributions from single bunch beam dynamics.
- Full Space Charge Forces (FSCF, red + purple).
- Space Charge Compensated transport (SCC, blue), e.g. provided by Space Charge Lens => K. Schulte, MOP102.

Current profile at the target

<table>
<thead>
<tr>
<th></th>
<th>2·σ FSCF</th>
<th>2·σ SCC</th>
<th>Δ(2·σ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>7.86</td>
<td>6.92</td>
<td>-12%</td>
</tr>
<tr>
<td>y</td>
<td>8.90</td>
<td>7.02</td>
<td>-21%</td>
</tr>
<tr>
<td>z</td>
<td>16.52</td>
<td>12.38</td>
<td>-25%</td>
</tr>
</tbody>
</table>

\((\Delta T)_{rms} = 2\cdot\sigma \)

Average \(\pm 2\cdot\sigma = 95.5\% \)

Requirements

- \(R \) < 10 mm
- \(\Delta W/W \) < ±5%
- \(\Delta T = 50-100 \) ns => \(\Delta T \approx 1 \) ns

\[\Delta T = 50-100 \] ns => \(\Delta T \approx 1 \) ns

\[\Delta W = 104.6 \] keV

\[\Delta W = 55.0 \] keV

\[\Delta W = 47\% \]
• **ARMADILLO** bunch compressor is presented.

• **Geometrical concept** is principally able to reach a long. compression ratio of 45.

• **Single bunch and multi bunch beam dynamics** results, even with full space charge forces, are promising to **satisfy the requirements**.

• Preliminary and **improved magnet designs** are proposed.

• **Optimization of hardware and complementary code** has to be continued.

• **Front to end simulations** with realistic fields have to be done.

• **Detailed error studies** have to be done.
Thank you for your attention

on behalf of

IAP, Goethe University Frankfurt

Acknowledgment:

Franz Käppeler (FZK)
R. Reifarth (GSI / U. Frankfurt)
M. Heil (GSI)

H. Klein, H. Podlech, A. Schempp, S. Schmidt, K. Schulte

IAP, Goethe University Frankfurt

LINAC-AG http://linac.physik.uni-frankfurt.de
AG-Schempp http://iaprfq.physik.uni-frankfurt.de
NNP-AG http://nnp.physik.uni-frankfurt.de