

Riezlern, 09/03/2010

- 1. Solenoidal Focusing and Emittance Growth
- 2. Beam Deflection and Emittance Growth
- 3. Time-dependent Kicker Fields, Electron Effects and Emittance Growth
- 4. Beam Dynamics in the ExB Chopper System
- 5. Conclusion & Outlook

Low Energy Beam Transport (LEBT) Section

Field Distribution 600 Vs/m^2 Abschirmplatten 1.26 Füllgradgrenze 400 200 0.242 B_r/mT Spule / 0.0468 0 0.00902 -200 0.00173 --400 0.000324 Strahlrichtung 5.25e-005--600 -50 -25 25 0 50 y/mm 800 Randfeld 600 B/mT 400 200 200 0 100 0 Field Calculations using CST EMS. 10 zhnn 20 -100 r/mm 30 40 -200 50

Riezlern, 09/03/2010

Beam Deflection with Electric Kicker

Beam Deflection with Magnetic Kicker Chopper System Lochblende $\Delta x = 60 \text{ mm}$ $B(t) = B_0 \cdot \sin(2\pi \cdot 125 \text{kHz} \cdot t)$ х Z Dipol 251 mm 251 mm $I_{k} = 300 \text{ mm}$ l_d = 300 mm Solenoid 3 Solenoid 2

Electron Effects in Time-dependent Kicker Fields

Electron Effects in Time-dependent Kicker Fields

Chopping of High Intensity Beams:

- Avoiding long drifts due to high space charge.
- *Minimizing duty factor for electrostatic beam deflection* in order to reduce risk of voltage breakdowns.
- *Beam dumping outside transport line* preferable in order to avoid high power deposition and uncontrolled production of secondary particles.

ExB Chopper System Static Magnetic Deflection $B_y = -300 \text{ mT}$ compensated by **Pulsed Electric Deflection** during 100ns Pulse. Pulsed $B_y = -60 \text{ mT}$ Beam Solenoid 3 Septum Magnet DC Deflector & HV Pulse Generator Beam ExB Chopper Solenoid 2 $\frac{V_{defl}}{V_{defl}} = \frac{10.5 \text{ kV}}{10.5 \text{ kV}}$

Conclusion & Outlook

- Aberration induced emittance growth must be carefully examined.
- Nonlinear fields are limiting filling degree of solenoidal lenses.
- Time-dependent beam deflection increases emittance in deflection plane.
- Electron effects can significantly influence beam radius and emittance growth.
- Collective effects of beam ions, compensation and secondary electrons must be considered.
- Multi-species PIC codes for simulation of time-dependent kicker fields are ready.
- Deflection test stand for experimental investigations is ready.

Thank you for your attention

Low Energy Beam Transport (LEBT) Section

Solenoid Lenses

Riezlern, 09/03/2010

Riezlern, 09/03/2010

Repeller

Electrodes

Halfpipe

Shielding Tube

Sol3

Separation Tank Beam Dump Septum Chopper Magnet Magnet Sol2 Beam

Separation Tank Beam Dump Septum Chopper Magnet Magnet Sol2 Sol3 Deflector Plates Bean Halfpipe Repeller Shielding Tube Electrodes

Field Simulation of All Magnetic Components

Field Simulation of All Magnetic Components

