Beam dynamic optimization and rebuncher for the FRANZ project

Daniel Noll Long Phi Chau

Overlook

- Beam dynamics optimization
 - The FRANZ bunch compressor
 - Optimization Strategy
 - Particle Swarm Optimization
 - Trajectory optimization
- Rebuncher
 - Multiaperture rebuncher
 - Rebuncher in front of the target
- Outlook

Beam dynamics in the FRANZ bunchcompressor

- 3 Triplets provide transversal focussing in the linac
- Transversal focussing in the bunch compressor works via edge and weak focussing
- Two rebunchers are needed for longitudinal focussing
- → 16 parameters for linac and one trajectory

Why use automatic optimization?

- Can linac and bunch compressor be optimized seperately?
 - No, bunch compressor performance is highly dependent on the input particle distribution
- A computer can try out solutions considerably faster than a human being.
 - Problem: Evaluating every possible combination in 16 dimensions is not an option
 - Solution: Use "smart" algorithm

Particle Swarm Optimization

- N points in *search space* (e.g in \mathbb{R}^{16}) with
 - position r
 - velocity v
 - a memory they remember the best position on their way
- Initialize r and v with random values

Optimization strategy

- Optimize one trajectory using a *global* optimization algorithm (like PSO)
- Repeat for adjacent trajectories:
 - Use solution for neighbouring trajectory as a starting point for a local optimization algorithm

Particle Swarm Optimization

A possible setting

Trajectory optimization

First results

Trajectory optimization

First results

- Broyden–Fletcher–Goldfarb–Shanno-algorithm from the Gnu Scientific Library was used
 First results:
 - On the transverse plane the longest trajectory is hard to optimize, longitudinally the shorter trajectories are more difficult
 - Optimize on outer trajectories instead of the central one
 - Parameters as well as results don't differ much between trajectories

Rebuncher

Multiaperture rebuncher

Properties

- Due to the transit time difference between trajectories the gaps are offset
- 87,5 MHz
- λ/4 resonator

Multiaperture rebuncher

Voltage distribution

1

3

5

Gap number

7

9

 Practically no change (< 500W) in power dissipation

Multiaperture rebuncher

Drift tube size and geometry

Rebuncher in front of the target

- Final focus on the target
- Energy variation after the bunch compressor

Rebuncher in front of the target

Outlook

- Multiple bunch compressor optimization runs
 - With different edge focussing strengths
 - Using first / last trajectory as a reference
- Further optimization of the rebuncher cavities
- Beam dynamics for the rebunchers using realistic fields

Thank you for your attention!