Daniel Noll Long Phi Chau

Rebuncher Cavities for a Nanosecond Bunch Compressor

Beam dynamics code

- Transport through time-dependant electric and magnetic fields
 - Bunched and continuous beams
 - Field import from CST Studio Suite
 - Pure multipole fields
 - Flexible field transformations and time dependencies (pulses, harmonic) possible
- Space charge
 - Multiple solvers available: Multigrid, BiCGStab, PP
 - Open or closed boundaries
 - Fixed or moving lattices
- Particle loss on geometry read in from CAD export (e.g. CST MWST)
- Parallelized (for example up to 24 cpu cores on CSC ,Fuchs')

Multiaperture Rebuncher

- Operation frequency: 87.5 MHz
- Gaps with relative offset due to the time structure of the beam
- Power required for voltage of 130 kV: 11 kW

Multiaperture Rebuncher

Considerations for activation mode

Multiaperture Rebuncher

Dipole fields within the gaps

Dipole components of the electric field leads to a fanout of the beam

- Final longitudinal focusing (120 kV) of the beam required to achieve nanosecond pulse length
- Energy variation of ± 200 keV for variation of neutron energy $\rightarrow 233$ kV required

Required for 233 kV (250 kV) amplitude with a 12 kW transmitter: $R_p = 4,5 M\Omega$ (5,2 M Ω)

2 gap quarter wave R_p = 2,55 MΩ 41 cm x 46 cm x 21 cm **4 gap quarter wave** R_p = 5,8 MΩ 52 cm x 29 cm x 25 cm **4 gap quarter wave** R_p = 5,75 MΩ 44 cm x 38 cm x 25 cm

Cavity design

RF emission

Beam dynamics

Beam dynamics / Bunch merging

Conclusion and Outlook

- Two rebunchers for the bunch compressor have been designed
 - Both cavities are feasible from an rf as well as from the beam dynamics point of view
 - Gap length for the multi aperture rebuncher yet to be decided
- Transport of 30 mA beam for activation mode possible

Conclusion and Outlook

- Two rebunchers for the bunch compressor have been designed
 - Both cavities are feasible from an rf as well as from the beam dynamics point of view
 - Gap length for the multi aperture rebuncher yet to be decided
- Transport of 30 mA beam for activation mode possible

Thank you for your attention!

Übersicht

- Einzeltrajektorienstrahldynamik im Bunchkompressor
 - Fehleranalyse
- Final Focus-Rebuncher
- Strahldynamik im Multiaperturrebuncher

Einzeltrajektorienstrahldynamik

Derzeitige Parameterwahl

Einzeltrajektorienstrahldynamik

Fehleranalyse: Variation einzelner Parameter

Einzelstrahldynamik

Fehleranalyse: alle Parameter

Optimierung

HF-Abstrahlung

Einzelstrahldynamik

Bunchmerging und Nachbeschleunigung

Multiaperturrebuncher

Strahldynamik

Dipolanteile in den Spalten führen zu einer Auffächerung des Strahles

Ausblick

- Multiaperturrebuncher:
 - Einfluss der Geradeausrichtung auf die HF-Eigenschaften
 - Effizienz der Driftröhrenaufsätze?
- Final Focus Rebuncher
 - Thermische Rechnungen
- Strahldynamik des Bunchkompressors
 - Optimierung der Parameter mit Bunchmerging

Vielen Dank für Ihre Aufmerksamkeit!