Experiments with a Fast Chopper System for Intense Ion Beams

Hannes Dinter

NNP AG, IAP Frankfurt

Monday, 7 March 2011

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Overview

- Experiments at deflector test stand successfully completed
 - Static deflection: good agreement with analytical results and PIC simulation
 - Successful pulsed mode operation
- Next steps for the FRANZ chopper
 - Deflection plate mounting (protection against sputtering)
 - Electrical connection of the pulse generator
 - $\rightarrow~$ Transmission of the deflection pulse into the chopper chamber
 - Secondary particles?

Test Stand Layout

Beam line and High Voltage pulse generator.

Deflection plates.

He⁺ beam, $W_B = 20 \text{ keV}$, $I_B = 1 \text{ mA}$; plate distance d = 7.6 cm.

Static Deflection – Deflection Angle

of a He⁺ beam with the energy $W_B = 20 \text{ keV}$

- Mismatch at the edges (beam close to the deflection plates)
- Asymmetry positive / negative → mapping characteristics

Static Deflection – Secondary Particles measurement with a He⁺ beam at the energy $W_B = 20 \text{ keV}$

Peak in the residual gas pressure at $\alpha = 5.7^{\circ} \rightarrow$ lower right image

Sputtering

Beam hits plates and walls, releases metal ions \rightarrow deposition on insulator surfaces

- \rightarrow High Voltage breakdowns
 - Plans: new plate mounting

- Shadowing
- Meandering
- New plate material?

New 45 Degree Deflection Ports

Assembly in the workshop.

Wheel ion-optical bench.

First beam dynamics simulations using the new setup (preliminary):

 $U_L = -13 \text{ kV}, U_R = +12 \text{ kV}, W_B = 20 \text{ keV}$ Redistribution: mapping characteristics

Pulsed Mode Operation

Pulse (black), resulting beam current behind aperture (red).

Pulsing the deflection voltage at $f_0 = 250 \text{ kHz}$, up to $U = \pm 5.6 \text{ kV}$

- Symmetrical wiring of deflection plates, minimising capacitance and voltage breakdowns
- Measuring time of flight and plateau length while varying pulse amplitude, beam energy
- Influence of secondary particles on the system
 - Dump on potential
 - Solution: secondary electron suppression
- Emission of pulse signal

Transmission of Pulse Signal

Cross-sectional view, actual cable design.

Large influence of pulse signal on a radio at 4 m distance

- Shielding the environment from pulse signal necessary
- Protection of the cable against external disturbances
- → Coaxial build-up (copper tube)

Parasitic capacitance $C_{K} = \frac{2\pi\varepsilon_{0}\varepsilon_{r}I}{\ln(\frac{R}{r})}$

- Air as dielectric ($\varepsilon_r = 1$)
- Short transmission distance I

• Large radius ratio
$$\frac{R}{r}$$

Outlook

- Wiring between pulse generator and chopper chamber
- Parasitic capacitances in acceptable range
- Consideration of sputtering in beam dynamics calculations
- Consequences for the design of the chopper chamber
 - Plate mounting
 - Plate material
 - Secondary electron suppression
- Emittance measurements of deflected beam

Outlook

- Wiring between pulse generator and chopper chamber
- Parasitic capacitances in acceptable range
- Consideration of sputtering in beam dynamics calculations
- Consequences for the design of the chopper chamber
 - Plate mounting
 - Plate material
 - Secondary electron suppression
- Emittance measurements of deflected beam

Thank you for your attention!