Numerical Models for the Investigation of Charged Particle Motion

M. Droba

6.3.2011 Riezlern

Content

Motivation
Symplectic Integrator
Space-charge (PIC)
Collective phenomena

Motivation

Tracking Programs – 6D

- paraxial Approximation
- higher order maps
- time integration example

PIC-Methods -> efficiency, parallelism
 Binary collisions -> plasma simulations
 Secondary particles -> electron clouds

Particle motion

Particle motion – time evolution

$$\dot{z} = \left\{ z, H \right\}$$

$$\{f,g\} = \sum_{i=1}^{N} \left[\frac{\partial f}{\partial q_i} \frac{\partial g}{\partial p_i} - \frac{\partial f}{\partial p_i} \frac{\partial g}{\partial q_i} \right]$$

$$\dot{z} = D_H z$$

$$z(\tau) = \exp(\tau \cdot D_H) \cdot z(0)$$

• Conservation of two-form(bilinear form) $\frac{dp \wedge dq}{dp}$ = symplectomorphismus (isomorphismus of Symplectic manifolds)

Numerical

Formal

$$\dot{z} = D_H z$$

Looking for numerical scheme (operator D_H, symplectic integrator that also conserves two-form) => matrix

$$M^T \Omega M = \Omega$$

$$\Omega = \begin{bmatrix} 0 & I_n \\ -I_n & 0 \end{bmatrix}$$

Example

H(p,q) = T(p) + V(q)

Explicit and Implicit schemes

$$\frac{\vec{p}^{i+1} - \vec{p}^{i}}{dt} = qE^{i} + q\frac{\vec{p}^{i} + \vec{p}^{i+1}}{2m} \times B^{i}$$
$$\frac{\vec{q}^{i+1} - \vec{q}^{i}}{dt} = \frac{\vec{p}^{i+1} + \vec{p}^{i}}{2m}$$

Examples Injection system

proton beam

Mirror configuration

toroidal magnetic field

focusing on sc-toroid

FRC-Field reversed configuration

Toroidal beam transport

 Low energy (10keV) composited ion beam

•The separation between species due to curvature drift possible over long path length

• Separation due to phase difference in Larmor gyration

Collective phenomena

- Multispecies Beam collimation
- Secondary electrons –
- -> electron clouds
- Two stream instability
 NNP
- Beam plasma interaction

Important

computation step dtmesh size

Project LIGHT

Target Normal Sheath Acceleration (TNSA)

-Focusing (Pulsed Solenoid ~ 18T) -Injection and Post-acceleration in CH-Structure

Simulation – Protons&Electrons

dt=25fs

R=30 μ m, L=22 μ m Protons W=10MeV Electrons W=5.5keV Particles/1 Macroparticle=4444 =>4.5Mio Macroparticles Mesh: dr=6 μ m

dφ=0.2rad dz=2μm

Simulation - Improvements

dt=5fs

R=30µm, L=22µm Protons W=10MeV Electrons W=5.5keV Particles/1 Macroparticle=4444 =>4.5Mio Macroparticles Mesh: dr=6µm

dφ=0.2rad dz=2μm

Less separation Lower electric fields and potential

LASIN – Kinetic Energy

Plasma oscillation longitudinally Along magnetic field

Due to the higher magnetic field in propagation direction Redistribution of longitudinal momentum To the transverse direction

change in long. kinetic energy

LASIN - Energy

Ratio – variation of total energy/energy (~ 1e-5 @ 3ps)

-Less comparing with previous case6%-Due to the variation of magneticfield ?

-Using different type of integrators

-Longer simulation needed

-Cyclotron frequency ->characteristic time τ_c =6e-12s -Plasma frequency -> characteristic time τ = 3.5e-13s

```
-Debye length \lambda_D = 0.2 \mu m
```


New strategy -> finer mesh dual mesh

Outlook

- Dynamic in strong magnetic field (Solenoids, Toroids & Fringing fields+ magnetic coupling)
- Collective phenomena (Gabor Lens, electrons&ions)
- Correction coils
- Space-charge effects & Aberrations
- Experience -> Development of efficient simulation and design tools for Accelerators