Numerical Models for the Investigation of Charged Particle Motion

M. Droba

6.3.2011 Riezlern
Motivation
Symplectic Integrator
Space-charge (PIC)
Collective phenomena
Motivation

- Tracking Programs – 6D
 - paraxial Approximation
 - higher order maps
 - time integration – example

- PIC-Methods -> efficiency, parallelism
- Binary collisions -> plasma simulations
- Secondary particles -> electron clouds
Particle motion

- Particle motion – time evolution
 \[
 \dot{z} = \{z, H\}
 \]

- Formal
 \[
 \dot{z} = D_H z
 \]

- Conservation of two-form (bilinear form) = symplectomorphismus (isomorphismus of Symplectic manifolds)
 \[
 \{f, g\} = \sum_{i=1}^{N} \left[\frac{\partial f}{\partial q_i} \frac{\partial g}{\partial p_i} - \frac{\partial f}{\partial p_i} \frac{\partial g}{\partial q_i} \right]
 \]
 \[
 z(\tau) = \exp(\tau \cdot D_H) \cdot z(0)
 \]
 \[
 dp \wedge dq
 \]
Numerical

- **Formal**
 \[\dot{z} = D_H z \]

Looking for numerical scheme (operator D_H, symplectic integrator that also conserves two-form) \(\Rightarrow\) matrix

\[M^T \Omega M = \Omega \]

\[\Omega = \begin{bmatrix} 0 & I_n \\ -I_n & 0 \end{bmatrix} \]

- **Example**

\[H(p, q) = T(p) + V(q) \]

- **Explicit and Implicit schemes**

\[\frac{\ddot{p}^{i+1} - \dot{p}^i}{dt} = qE^i + q \frac{\dot{p}^i + \ddot{p}^{i+1}}{2m} \times B^i \]

\[\frac{\ddot{q}^{i+1} - \dot{q}^i}{dt} = \frac{\dddot{p}^{i+1} + \dddot{p}^i}{2m} \]
Examples

Mirror configuration

Injection system
- Proton beam
- Toroidal magnetic field

Focusing on sc-toroid
- R = 1 m
- B = 8 T
- p, W = 200 MeV
- 12 beamlets

FRC-Field reversed configuration
- Fusion, targets

6.3.2011 Riezler
Toroidal beam transport

- Low energy (10keV) composited ion beam
- The separation between species due to curvature drift possible over long path length
- Separation due to phase difference in Larmor gyration
Multispecies – Beam collimation
Secondary electrons – -> electron clouds
Two stream instability
NNP
Beam plasma interaction

Particle in cell Method
Important
- computation step \(dt \)
- mesh size
Target Normal Sheath Acceleration (TNSA)

- Focusing (Pulsed Solenoid ~ 18T)
- Injection and Post-acceleration in CH-Structure

Simulation – Protons & Electrons

\[dt = 25 \text{fs} \]

R = 30 \text{\mu m}, \ L = 22 \text{\mu m}

Protons \ W = 10 \text{MeV}
Electrons \ W = 5.5 \text{keV}

Particles/1 Macroparticle = 4444 \Rightarrow 4.5 \text{Mio}

Macroparticles

Mesh:
\[\text{dr} = 6 \text{\mu m} \]
\[\text{d} \phi = 0.2 \text{rad} \]
\[\text{dz} = 2 \text{\mu m} \]
Simulation - Improvements

- \(dt = 5 \text{fs} \)
- \(R = 30 \mu m, \ L = 22 \mu m \)
- Protons \(W = 10 \text{MeV} \)
- Electrons \(W = 5.5 \text{keV} \)
- Particles/1 Macroparticle = 4444 \(\Rightarrow \) 4.5Mio Macroparticles
- Mesh:
 - \(dr = 6 \mu m \)
 - \(d\phi = 0.2 \text{rad} \)
 - \(dz = 2 \mu m \)

Less separation
Lower electric fields and potential

6.3.2011 Riezlern
Plasma oscillation longitudinally
Along magnetic field

Due to the higher magnetic field in propagation direction
Redistribution of longitudinal momentum
To the transverse direction
Ratio – variation of total energy/energy (~ 1e-5 @ 3ps)

- Less comparing with previous case 6%
- Due to the variation of magnetic field?
- Using different type of integrators
- Longer simulation needed

- Cyclotron frequency -> characteristic time $\tau_c = 6e-12s$
- Plasma frequency -> characteristic time $\tau = 3.5e-13s$
- Debye length $\lambda_D = 0.2\mu m$

New strategy -> finer mesh dual mesh
Dynamic in strong magnetic field (Solenoids, Toroids & Fringing fields + magnetic coupling)
Collective phenomena (Gabor Lens, electrons & ions)
Correction coils
Space-charge effects & Aberrations
Experience -> Development of efficient simulation and design tools for Accelerators