Mapping Characteristics of Solenoid Lenses

Marcel Lotz

NNP AG, IAP Frankfurt

Contents

- Motivation
- Experimental Setup
- Analytics
- Starting Distribution Calculation
- Measured Mapping Characteristics of the Solenoid
- Comparison Between Analytics, Simulation and Measurement
- Conclusion and Outlook

Motivation

Experimental Setup

Experimental Setup

IAP Experimental hall:

- Ion source-

- Solenoid -

Aperture radius	75 mm
Length	408 mm
Maximum current	400 A
Maximum field on axis	791 mT
Field scales linear with current.	

- Emittance measurement device -

Analytics

- Drift and Solenoid -

Phase space ellipse:

Ellipse equation:

$$\gamma x^2 + 2\alpha x x' + \beta x'^2 = \epsilon$$

Mapping of twiss parameters:

Drift:

$$\begin{pmatrix} \beta & -\alpha \\ -\alpha & \gamma \end{pmatrix} = \begin{pmatrix} 1 & L \\ 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} \beta_0 & -\alpha_0 \\ -\alpha_0 & \gamma_0 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 \\ L & 1 \end{pmatrix}$$

$$\alpha = \alpha_0 - L\gamma_0$$

$$\beta = \beta_0 - 2L\alpha_0 + L^2\gamma_0$$

$$\gamma = \gamma_0$$
L: drift length

Solenoid:

$$\begin{pmatrix} \beta & -\alpha \\ -\alpha & \gamma \end{pmatrix} = \begin{pmatrix} \cos^2(ks) & \frac{\sin(ks)}{k} \\ -k\sin(ks) & \cos(ks) \end{pmatrix} \cdot \begin{pmatrix} \beta_0 & -\alpha_0 \\ -\alpha_0 & \gamma_0 \end{pmatrix} \cdot \begin{pmatrix} \cos^2(ks) & -k\sin(ks) \\ \frac{\sin(ks)}{k} & \cos(ks) \end{pmatrix}$$

$$\begin{aligned} \alpha &= k\cos(ks)\sin(ks)\beta_0 - \sin^2(ks)\alpha_0 + \cos(ks)^2\alpha_0 - \frac{\cos(ks)\sin(ks)}{k}\gamma_0 \\ \beta &= \cos(ks)^2\beta_0 - 2\frac{\cos(ks)\sin(ks)\alpha_0}{k} + \left(\frac{\sin(ks)}{k}\right)^2\gamma_0 \\ \gamma &= k\sin^2(ks)\beta_0 + 2k\sin(ks)\cos(ks)\alpha_0 + \cos^2(ks)\gamma_0 \end{aligned} \qquad \begin{aligned} k &= \frac{eB_{0,max}}{2p} \\ s: \text{ Effective field length} \\ B: \text{ Maximum axis field} \\ p: \text{ Particle momentum} \end{aligned}$$

Analytics

Measured Distribution and Calculated Starting Distribution

Measured distribution at the slit of the emittance measurement device:

Starting distribution at the copper flange:

Mapping Characteristics of Solenoid Lenses

Comparison Between Analytics and Simulation

Emittance Measurement

Comparison Between Analytics, Simulation and Measurement

Comparison Between Analytics, Simulation and Measurement

Conclusion

- Analytics, simulations and measurement show good agreement
- Emittance seems to be reduced with higher solenoid current -> lower beam radius in solenoid aperture

Outlook

- Emittance measurements with solenoid currents between 150 and 180 A
- Measurements with the y-plane
- Measurements with momentum and perveance equivalent (30kV, 9.375 mA)
- Analysis of emittance growth as a function of first solenoid filling degree
- Ion source extraction with position and angular offset

Thank you for your attention

Direkte Emittanzmessung

- Erster Aufbau –

Gemessene Verteilung und errechnete Startverteilung

07.03.2011

Mapping Characteristics of Solenoid Lenses

Vergleich Simulation und Messung

Simulation mit unterschiedlichen Startverteilungen

Die Simulation

Die Simulation

Abhängigkeit der Emittanz von der Auflösung der Emittanzmessanlage

Vergleich Simulation und Messung: Twiss-Parameter

Twiss-Parameter

Fig. 5.2. Phase space ellipse

aus: Wiedemann, Particle Accelerator Physics

- Slit grid measurement device -

