Research at IAP

Current Topics of the Figure-8 Storage Ring F8SR

요시카 바그너
Joschka Wagner
KIRAMS - Seoul, Republic of Korea
IAP Goethe University - Frankfurt, Germany

July the 21th, 2014

Outline

1 IAP - Institute of Applied Physics

2 Accelerator Research Fields at IAP

- LINAC Research \& Development

■ RFQ Research \& Development
■ FRANZ Project
■ Non Neutral Plasma Group - NNP
3 Figure-8 Storage Ring

- Experiments
- Theory \& Simulations

Natural Sciences Campus

GOETHE 䫓 UNIVERSITÄT
 FRANKFURT AM MAIN

L IAP - Institute of Applied Physics

Institute of Applied Physics - IAP

$\frac{\text { Prof.Dr. Holger Podlech }}{\text { LINACS, NC \& SC, RFQs }}$
Prof.Dr. Rene Reifarth
Experimental Nuclear Astrophysics

Prof.Dr. Ulrich Ratzinger
LINACS, RFQs, lonSources \& NNP

Prof.Dr. Oliver Kester

FAIR@GSI, Director

Prof.Dr. Joachim Jacoby
Plasma Physics

Prof.em.Dr.Alwin Schempp
RFQs

IAP is one of the leading laboratories for low and medium energy hadron accelerators with in total $\mathbf{1 4 0}$ members including Postdocs, PhD, Ma \& Ba Students \& Technical Employees

Collaborations in Accelerator Technology

TECHNISCHE
UNIVERSITA'T
DARMSTADT

BROOKHRNEN

NATIONAL LABORATORY

- 考Fermilab

LAccelerator Research Fields at IAP
L LINAC Research \& Development

LINAC Research \& Development

IH -Structure 100 MHz for BNL, 13 MV

Interdigital H-Mode-Structure H111-Mode Efficient DTL-structures for the low and medium energy range

LAccelerator Research Fields at IAP
L LINAC Research \& Development

LINAC Research \& Development

Crossbar H-Mode-Structure

H211-Mode
175 MHz CH-Rebuncher

-Accelerator Research Fields at IAP
L LINAC Research \& Development

LINAC Research \& Development

FAIR Proton-Injector 325 MHz 70 MeV 70 mA

LAccelerator Research Fields at IAP
L LINAC Research \& Development

LINAC Research \& Development

Superconducting
325 MHz CH-Cavity

Prototype

Helium Vessel

LAccelerator Research Fields at IAP
L LINAC Research \& Development

LINAC Research \& Development

Cryogenic Prototype Testing

L Accelerator Research Fields at IAP
L LINAC Research \& Development

LINAC Research \& Development

SC 176 MHz Cavity $\beta=0.096$ for the MYRRHA Injector

special design due to mechanical stress

L Accelerator Research Fields at IAP
L LINAC Research \& Development

LINAC Research \& Development

Cold mass of SHE cw-LINAC at GSI

 $216 \mathrm{MHz} \beta=0.059$

LAccelerator Research Fields at IAP
$\left\llcorner_{\text {RFQ Research \& Development }}\right.$

RFQ Research \& Development

4-rod type RFQs

Fermilab 200 MHz RFQ

High Power RFQ
for FRANZ \& MYRRHA
176 MHz Goal: $P>50 \mathrm{~kW} / \mathrm{m}$

LAccelerator Research Fields at IAP
-RFQ Research \& Development

RFQ Research \& Development

Adjustment, Testing and Commissioning

High Power Cooling

Present Projects

■ MYRRHA 17 MeV Injector (responsible), protons, cw operation, NC and SC, 176 MHz
■ FAIR proton Linac, $70 \mathrm{MeV}, 70 \mathrm{~mA}, 325 \mathrm{MHz}$
■ superconducting cw heavy ion linac at GSI, $5-6 \mathrm{AMeV}$, 217 MHz
■ High Charge Injector GSI, cw operation, 108 MHz
■ High Current Injector GSI 36 MHz
■ HTL (H-Mode Test Linac), 108/217 MHz, focussing with plasma lenses, $1 \mathrm{AMeV}{ }^{4} \mathrm{He}$

- Beam Funneling at IAP Frankfurt

■ FRANZ, 2 MeV protons, cw operation, 2-200 mA, 175 MHz
■ High Current Low Energy Figure-8 Storage Ring, F8SR

Achievements

- 50-60 RFQs have been built and put into operation all over the world:
GSI, BNL, Fermilab, Japan, HZB Berlin, Lyon, HIT, MedAustron, SARAF, MSU, Dubna, DESY, ...
- more than 30 IH-DTL-Linacs: GSI, CERN Linac-3, BNL, Munich, REX-ISOLDE, HIT, FRANZ, Dubna,...

LAccelerator Research Fields at IAP
LFRANZ Project

FRANZ Project

Frankfurt Neutron Source at the Stern-Gerlach-Zentrum

Non Neutral Plasma Group - NNP

- Beam focussing with Garborlenses via electron clouds

- Beam diagnostics, such as non destructive $180^{\circ} \mathrm{CCD}$ scan of residual gas

- High current beam physics and space charge effects

■ Code development such as BENDER and tralitrala

Superconducting High Current lon Storage Ring F8SR

- Magnetostatic $|\vec{B}| \approx 6 \mathrm{~T}$
- Beam Energy: $W=150 \mathrm{keV}-1 \mathrm{MeV}$
- Beam Current: $I=1-10 \mathrm{~A}$
- Orbital revolution period: $T=2 \mu \mathrm{~s}$
- Stored Beam Energy \& Power:
$E=3 \mathrm{~J}$
$P_{\text {max }}=1.5 \mathrm{MW}$

Why to build a new and such crooked Storage Ring Motivation:

■ Fusion reactivity studies in a High Current Mode such as $\mathrm{p}+{ }^{11} \mathrm{~B} \rightarrow 3{ }^{4} \mathrm{He}+8.7 \mathrm{MeV}$

- multiple beam \& particlespecies experiments in Collider Mode down to center of mass collision energies of 100 eV
- space charge compensation by magnetic surface bounded secondary electrons
- multi ionisation of light atoms by an intense proton beam
- beam plasma interaction
- coulomb screening effects

LFigure-8 Storage Ring

- Experiments

F8SR Experiments - Setup

Two 30° Toroids, $B_{\max }=0.6 \mathrm{~T}$
Two refurbished injectors, each with:

- terminal, $U_{\text {max }}=20 \mathrm{kV}$
- volume source, $I \approx 3.4 \mathrm{~mA}$ hydrogen mix, $\max 50 \%$ protons

■ faraday-cup + solenoid, $B_{\max }=0.72 \mathrm{~T}$

F8SR Experiments - Momentum-Filter

■ Design and construction of a magnetic Momentum-Filter for different hydrogen species $\left(\mathrm{H}^{+}, \mathrm{H}_{2}^{+}, \mathrm{H}_{3}^{+}\right)$

F8SR Experiments - Momentum Filter

Simulations of hydrogen species $H^{+}, H_{2}^{+}, H_{3}^{+}$with LINTRA

Measurements: beam current in Faraday-Cups FDT1: in front of solenoid FDT2: behind filter-aperture filterchannel: grounded via ampèremeter, I ~ losses

- Figure-8 Storage Ring

Lexperiments

F8SR Experiments - Injection

Injection simulations to determine air-core-coil parameters done (sim.-code segments). $B=0.2-0.3 \mathrm{~T}$
Coil-design and construction is upcoming.

F8SR Experiments - Diagnosis

Non invasive beam diagnosis via residual gas monitor in high magnetic fields

- movable ring of azimutal photodiodes for visible light

Theory \& Simulations - Closed Orbit Studies

Traditional Rings, focussing \& corrections \rightarrow Dipole, Quadrupoles

F8SR \rightarrow Guiding-Fields

Complex magnetic field geometry inhibits traditional transport description via matrices \& fixpoints
\rightarrow find analogous description to interlink
In magnetic coordinates (Boozercoordinates) ψ, θ, ξ
\rightarrow canonical variables for Drift-Hamiltonian:

- fixpoint studies with multipole expansion within the fieldmap are ongoing
- conventional 2 d multipole expansion investigations do not satisfy the complex field geometry

Trajectories (drift surfaces) of two reverse beams

Field Imperfections \& Error Studies

Construction always has coil missalignment \rightarrow interfering multipole fields

Since \vec{B} has components: $B_{\psi}=0, B_{\xi}, B_{\theta}$ Superposing a poloidal (B_{θ}) and multipole field. What do we get?

One obtains points with $|B|=0 \rightarrow$ analytically solvable poloidal + quadrupole
\rightarrow Quadrupoles around $|B|=0$
poloidal + sextupole
Poloidal around center area

Influence on particle transport?

Simulations with $\hat{B}_{\theta}=\hat{B}_{q}=0.1 \% \hat{B}_{\xi}$

front view

top view

side view

\rightarrow certain aperture at a specific slice
\rightarrow dynamic aperture along the ring axis
Acceptance of the confinement area is reduced
\rightarrow areas of particle loss

Injection via Adiabatic Compression

Concerning the canonical momentum
$\vec{p}=m \vec{v}+q \vec{A}$
even if $\vec{v} \| \vec{B}$ at injection point one obtain
$\Delta \vec{A} \rightarrow \Delta \vec{v}$ during entering
\rightarrow radius of acceptance
$r=\frac{2 m v_{\|}}{q B}$
$\left.r\right|_{B=6 \mathrm{~T}}=8 \mathrm{~mm}$

Injection via Adiabatic Compression

- the facing problem is a smooth field transition
magnetic moment $\mu=\frac{m v_{\perp}^{2}}{2 B}$ must be constant
\rightarrow adiabatic invariant

$$
\frac{\mathrm{dB}}{\mathrm{~d} t}=\frac{\frac{\partial B}{\partial t}}{\substack{=0}}+v_{z} \frac{\partial B}{\partial z}<B \frac{\omega_{c}}{2 \pi}=\frac{q B^{2}}{2 \pi m} \rightarrow v_{z} \frac{\Delta B}{\Delta z}<q \frac{B^{2}}{2 \pi m}
$$

Storage
Ring
$B=6 T$

LFigure-8 Storage Ring
L Theory \& Simulations

Injection via Adiabatic Compression

due to the gradient $\frac{\Delta B}{\Delta s} \rightarrow B(x, y, z) \rightarrow B(\xi)$

Injection via Adiabatic Compression

drift velocity coming from $R \times B$ drift

$$
v_{x}=\frac{m v_{\|}^{2}}{q B(\xi) R}
$$

$v_{x} \stackrel{!}{=}$ const.
$\rightarrow B(\xi) \cdot R(\xi) \stackrel{!}{=}$ const.
$B(\xi)=a_{1} \cdot \xi \quad R(\xi)=a_{2} \cdot \frac{1}{\xi}$
hyperbolic spiral transport channel

- Figure-8 Storage Ring

LTheory \& Simulations

Participation in KHIMA Project - Simulations for Errorstudies in the LEBT with TraceWin

[TraceWin - CEA/DSM/Irfu/SACM]

여러분의 관심에 감사드립니다

Thank you for your attention!

Acknowledgement

Prof.Dr.Podlech, Prof.Dr.Ratzinger, Prof.em.Dr.Schempp, Dr.Martin Droba, Dr. Oliver Meusel, Dr. Marcus Iberler, Dr. Kathrin Schulte, Dr. Christoph Wiesner, Daniel Noll, Heiko Niebuhr, Adem Ates, Philipp Schneider, Christopher Wagner, Malte Schwarz, Christine Claessens, Anja Seibel, Florian Dziuba, Dr. Janet Schmidt, Hannes Dinter, Robert Brodhage, Michael Amberg,

Contact

- IAP:
www1.uni-frankfurt.de/fb/fb13/iap/index.html
- Prof.Dr.Podlech:
linac.physik.uni-frankfurt.de
■ NNP Group,Prof.Dr.Ratzinger:
nnp.physik.uni-frankfurt.de
- Prof.em.Dr.Schempp:
iaprfq.physik.uni-frankfurt.de/RFQ_Home/Home.html
■ FRANZ Project:
exp-astro.physik.uni-frankfurt.de/franz/
■ Prof.Dr.Kester:
acc.physik.uni-frankfurt.de
Joschka Wagner: J.Wagner@IAP.Uni-Frankfurt.de

