Joschka F. Wagner

Riezlern, Austria - HIC for FAIR Workshop IAP Goethe Universität Frankfurt AG Ratzinger - NNP

9th of March 2015

Outline

1 Motivation

- 2 A Bit Theory
 - The Adiabatic Invariant
 - Geometry of a Plane Curve
 - The RxB Drift
- 3 Injection Channel Constraints
- 4 Coil Desgin & Simulations
 - Magnetic Field
 - Particle Tracking

5 Outlook

- Motivation

F8SR Injection Area

- Magnetostatic $|\vec{B}| \approx 6 \,\mathrm{T}$
- Beam Energy: W = 150 keV-1 MeV
- Beam Current: I = 1-10 A

└─A Bit Theory

└─ The Adiabatic Invariant

The Adiabatic Invariant

└─A Bit Theory

Geometry of a Plane Curve

Geometry of a Plane Curve

tangent vector: $\vec{t} = \frac{d\vec{r}}{ds}$ curvature: $\kappa = \left| \frac{d^2\vec{r}}{ds^2} \right|$ radius of curvature: $R_{\rm C} = \frac{1}{\kappa}$

For a circle: $R_{\rm C} = R = {\rm const.}$ and $\kappa = {\rm const.}$

Concerning for ex. a hyperbolic spiral: $R_{\rm C} \neq R$, $R = \frac{1}{\theta}$, $R_{\rm C} = \frac{1}{\kappa} = \frac{a}{\theta} \left(1 + \frac{1}{\theta^2}\right)^{\frac{3}{2}}$

A Bit Theory

L The RxB Drift

The RxB Drift

there is a need for a off curvature-plane drift velocity to provide the necessary centripetal force F_C

$$egin{aligned} ec{F}_{\mathsf{c}} &= rac{m \mathsf{v}_{\parallel}^2}{R_{\mathsf{c}}} \ ec{\mathsf{v}}_{\mathsf{d}} &= rac{1}{q} rac{ec{F} imes ec{\mathsf{B}}}{B^2} \
ightarrow ec{\mathsf{v}}_{\mathsf{d}} &= rac{m \mathsf{v}_{\parallel}^2}{q B^2} rac{ec{\mathsf{R}}_{\mathsf{c}} imes ec{\mathsf{B}}}{R_{\mathsf{c}}^2} \end{aligned}$$

Injection Channel Constraints

Injection Channel Constraints

- due to neighboring toroid coils
 - \rightarrow field distortion
 - \rightarrow particle kick
 - \rightarrow channel must be bend $R < 0.6\,\mathrm{m}$
 - $\mathbf{R} < \mathbf{0.0} \,\mathrm{m}$
- adiabatic invariant \rightarrow small $\frac{\Delta B}{\Delta s}$ \rightarrow leads to certain channel length \approx 4 m R = const. not possible $(2\pi R < 4 \text{ m})$
 - \rightarrow R must vary \rightarrow spiral shape
- concerning the $\vec{R} \times \vec{B}$ -Drift \rightarrow the curvature $\kappa = 1/R_{\rm C}$ shall start slowly for technical feasibility \rightarrow **spiral shape**

Coil Desgin & Simulations

Injection Channel Design

hyperbolic spiral shape was chosen and implemented in *Segments* (design program by M.Droba)

└─ Coil Desgin & Simulations

└─ Magnetic Field

Magnetic field on axis

└─ Coil Desgin & Simulations

└─ Magnetic Field

Magnetic field on axis

└─ Coil Desgin & Simulations

Magnetic Field

Mapped Magnetic Surface

channel entrance

kicker area

└─ Coil Desgin & Simulations

Particle Tracking

Single Particle Tracking

└─ Coil Desgin & Simulations

Particle Tracking

Single Particle Tracking

└─ Coil Desgin & Simulations

Particle Tracking

Single Particle Tracking

Adiabatic Invariant: $v_s \frac{\Delta B}{\Delta s} \cdot \frac{2\pi m}{qB^2} < 1$

└─ Coil Desgin & Simulations

Particle Tracking

Acceptance - Particle Tracking

 $r[1 \,\mathrm{cm}: 10 \,\mathrm{cm}] \ 1 \,\mathrm{cm}$ steps, $\alpha =$ every 45 degree

Coil Desgin & Simulations

Particle Tracking

Acceptance - Particle Tracking

Coil Desgin & Simulations

Particle Tracking

Acceptance - Particle Tracking

└─ Coil Desgin & Simulations

Particle Tracking

Acceptance - Particle Tracking

Particles within $r \le 9 \,\mathrm{cm}$ all α had been trapped. The *beam radius* decreased from $9 \,\mathrm{cm}$ to $1.8 \,\mathrm{cm}$

Outlook

Outlook

- export designed coil geometry to *bender* to perform full beam simulations with space charge
- continue the ExB-kicker simulations and combine them with the channel simulations
- get ready for multi turn injection

Outlook

Thank you for listening!

