Summary Warp Simulations By Frank Nürnberg, Mai 2010

"Wenn Star Trek weiß wie ein Warp Antrieb gebaut wird, warum baut den dann keiner JETZT!?"

TECHNISCHE UNIVERSITÄT DARMSTADT

Experiment Jan. 2010 @ Phelix

05/07/2010 | Warp Summary, GSI | Frank Nürnberg | 3

RCF1 @

405 mm

Warp Setup

16

80 mm

RCF2 @

500 mm

Source parameters

Figure 3: Proton beam parameters of the Phelix shot 18 for the Warp particle loader: experimental data (•) and polynomial fits (—) of the source size (a), the envelope divergence (b) and the angle error for the transverse beam emittance (c).

BERKELEY LA

Plasma and simulation criteria

• Resolving **plasma frequency**: $\omega_p \cdot \Delta t < 1$

- \rightarrow Volume source because of n_e
- $\rightarrow \Delta t = 75$ fs (680 steps = 51 ps), $\Delta t = 1$ ps (21000 steps)

Courant criterion:

$$\rightarrow \Delta t$$
 = 75 fs: $\Delta s(E_{p,max})$ = 5 µm, $\Delta s(E_e=300 \text{ keV})$ = 17 µm $\rightarrow \Delta t$ = 1 ps: $\Delta s(E_{p,max})$ = 65 µm , $\Delta s(E_e=300 \text{ keV})$ = 232 µm

Debye length

 \rightarrow grid

 \rightarrow convergence check: 1000/500/250/100 µm

Self fields: off (top) /on (bottom)

95 % of all protons get lost in the solenoid for both cases

TECHNISCHE

UNIVERSITÄT DARMSTADT

Beam neutrality: potential

BERKELEY LAB

TECHNISCHE UNIVERSITÄT DARMSTADT

Convergence check - protons

Convergence check - electrons

2.5 @ 2378.2 ps @ 3315.8 ps 22 @ 4628.3 ps 22 22 20 20 20 2.5 18 18 18 16 16 16 1.5 R (cm) 14 R (cm) R (cm) 14 14 12 12 12 0.5 0.5 0.5 ³⁰ MeV 20 25 10 25 35 40 15 15 20 25 30 MeV MeV Z (cm) Z (cm) Z (cm) 2.5 @ 11640.7 ps @ 2378.2 ps @ 7815.7 ps 5.5 1.8 0.18 1.6 0.16 Electrons 1.4 0.14 1.2 2.5 1.5 0.12 4.5 R (cm) R (cm) R (cm) 0.1 0.8 0.08 0.6 0.06 0.5 0.04 0.4 3.5 0.5 0.2 0.02 20 38 40 42 44 46 48 MeV 10 15 25 30 35 40 45 50 MeV 25 35 40 45 MeV Z (cm) Z (cm) Z (cm)

Focus and collimation

Emittance growth

BERKELEY LA

RCF stacks: with B and without B

TECHNISCHE UNIVERSITÄT DARMSTADT

Warp simulation: RCF stack

#1: outer ring / inner ring / spot r = 21/9/2 mm #2: halo / spot r = 6/2.5 mm#3: ring: outer/inner r = 13.5/10 mm #4: r = 23.5 mm #5: r = 26.5 mm #6: r = 28.5 mm

#1: outer ring / inner ring / spot r = 14/8/1.5 mm #2: halo / spot r = 7/2.5 mm#3: ring: outer/inner r = 11.8/7.4 mm #4: r = 25 mm #5: r = 26.8 mm #6: r = 27.5 mm

#3

Warp simulation: comparison

TECHNISCHE

UNIVERSITÄT DARMSTADT

Dipole

Figure 4.18: Mesh imprint for 8 MeV protons 2 cm (left) and 10 cm (right) behind the dipole.

Dipole 140 mT, no solenoid

Transmission of electrons through the solenoid: Without dipole: 4.7 % - with dipole: 4 % With dipole and solenoid: 20.3 %

TECHNISCHE

UNIVERSITÄT DARMSTADT

Transmission of electrons through the solenoid: With dipole 140 mT and solenoid: 20.3 % With dipole 280 mT and solenoid: 21.2 %

Outlook

- Optimizing setup for transmission
- Dipole
- Energyselection using 2 solenoids
- Solenoid-drift-compression-focussing
- Quadrupol triplett
- 1-D parameter

Results/ideas meeting

- Check detector image if self-fields/solenoid-field off
- Check initial expansion: potential, particles per cell, grid
- Convergence check: decrease gid size AND increase particle number
- Concentrate on energy window for collimation and focussing (save only particles in this window)
- Energy conservation
- Different initial electron distribution to avoid oscillations

