Performance of laser accelerated ion beams for therapy applications

I. Hofmann, HI Jena & GSI Darmstadt WE-Heraeus-Seminar Bonn, December 13-17, 2010

- 1. Introduction (beam power, beam quality tutorial)
- 2. Point Study: Radiation Pressure Acceleration (Yan et al.)
- 3. Beam chromatic emittance and chromatic filtering
- 4. Conditions for tumor conformal dose distribution
- 5. Radiation shielding aspects
- 6. "LIGHT" Test Stand
- 7. Outlook & conclusions

Acknowledgment:

GSI: A. Orzhekhovskaya, , I. Strasik, S. Yaramyshev, G. Kraft, LIGHT-collaboration

> MPQ: J. Meyer-ter-Vehn, X. Yan

Progress in laser ion acceleration

Laser ion acceleration has triggered enthusiasm towards potential therapy applications due to:

- required energies are approached (60 MeV p)
- high "quality" of beams (small 6D phase space)
- abundance of protons per shot (> 10¹¹)
- high rep rate laser available (10 Hz)
- laser accelerator compact

Highly critical "review" of laser-proton therapy by Linz & Alonso PRSTAB10, 094801 (2007):

"accelerator based therapy builds on half a century of development ..."

	(Cyclotr	Laser Accelerator	
1.	Beam Energy (p)	200 – 250 MeV	in theory possible
2.	Energy variability	"+" in synchrotron	? demanding
3.	$\Delta E/E$	~ 0.1%	? demanding
4.	Intensity	10 ¹⁰ /sec	10 ⁹ /10 ⁸ at 10/100 Hz
5.	Precision for scanning	"+" in synchrotrons	? large ∆p/p

- Linz & Alonso didn't quantify their highly critical arguments against laser acceleration!
- Laser ions require different path than accelerator ions!
- Quantify here along one model of laser acceleration (point study)

Beam power - can lasers compete with?

High beam power is crucial for many accelerator applications, where high rates of "secondary particles" are needed

- S spallation neutron sources (material research etc., SNS, JPARC, ESS, ...) 1-10 MW
- s radioactive beams (nuclei off stability, FAIR-GSI, FRIB, ...)
- S nuclear waste transmutation (accelerator driven reactors to burn waste, MYRRHA-project in EU) 10-50 MW
- S neutrino factories ~ few MW proton driver

SNS Accelerator Complex

Spallation Neutron Source, Oakridge

Crossed-bar H-Structure

Beam Energy	70 MeV		
Beam Current	70 mA		
Protons / Pulse	7·10 ¹²		
Pulse Length	36 µs		
Repetition Rate	4 Hz		
RF Frequency	352 MHz		

(Univ. Frankfurt U. Ratzinger)

Conventional p Accelerators Laser Accelerators

Beam power

	MeV	p/sec	beam power		
SNS Oakridge (Spallation Neutron Source):	1000	10 ¹⁶	1 MW (average)		
			(50 MW in 600ns)		
FAIR-GSI p driver linac (antiproton facility) :	70	~ 3x10 ¹³	100		
			(MW in 30µs)		
Proton therapy (typical, 10 ⁹ per shot):	~ 250	< 10 ¹⁰	~ 0.2 W		
10 Hz/10 J Petawatt class laser (today) ~ 100 W average power					

efficiency of photons into protons/ions:

- ~ 10⁻² is realistic efficiency
- ~ 1 W proton beam possible "overproduction" for therapy needs
- therapy application within reach in terms of average power

High beam quality – small emittance

Sufficiently small beam emittance can be important:

- v avoid beam loss in high power accelerators
 - in linear accelerators 1 W/m beam loss criterion for hands-on maintenance
- secondary particle collection: efficient collection requires
 small angles and energy spread (antiproton collector from proton target etc.) stronger criterion!
- $_{\rm V}$ $\,$ in laser produced beams (unfortunately) angles and energy spread not so small
- v high resolution target experiments

"Point Study": Coherent Acceleration of Ions (CAI, RPA, 2009)

using simulation model by X. Yan et al. - "one of several models"

- claim ~ 10¹² p for energies up to GeV with 10²² W/cm²
- "narrow" peaked energy spectrum ("clump")
- a "theoretical model" not the only one!

Radiation Pressure Acceleration from nm thick C foils

- > 3 10^{21} W/cm² / 45 fs / 10 μ m spot radius
- results from 2D numerical simulation
 assuming circular polarized light
- critical issues!
- note: p yield factor 5-10 lower for 5 μm spot radius we discuss high yield case (higher laser energy)

Proton energy scaling

E_{max} ~ I (analytical) or I^{0.8} (simulation) due to **self-organizing** regime with relativistic transparency in outer region of spot (Yan et al. PRL 103, 2009)

G (S)

Spectral yield

spectral density E, Ω (rad)

$dN(E, \Omega)$		
dE	GeV	

Beam quality after production depends on interfaces!

6 D phase space volume: very small

filamentation? | effective increase | ~ const.|

GSX-

Ion collector options

Collection of "secondary particles" is an issue, if born under large angular and energy spread – common problem no collector – angle selection by small aperture solenoid lens quadrupole triplet or quadruplet magnetic horn (used for antiprotons) not well-suited here

Collecting pbars: Magnetic Horn

Magnetic Horn

MARS Simulation of the pbar Yields

DYNAMION tracking code*: includes 2nd (chromatic) and higher order aberrations

- different energies experience different focal lengths $\delta f/f \sim \delta E/E$
- minor effect are 3rd order ٠ aberrations
- space charge matters near laser target (preferrably not in B-field)

 $B_{z}(T)$

Target measures time integrated emittances

²⁰

Chromatic emittance scaling

 $\epsilon_{chromatic} = \alpha_c \Delta E / E \Omega_s^2 [m rad]$ "design basis"

- find $\alpha_c = 0.3$ m/rad for assumed solenoid (240 mm long)
- for longer solenoid benefit from B ~ L⁻¹, but α_c also increasing
- example: $\Delta E/E=0.05$, $\Omega_s=25$ mrad $\epsilon_{chromatic}=10$ mm mrad
- for quad channel $\alpha_c \sim 3...5$ times larger

chromatic emittance determines minimum spot size behind collector lens cannot reach small spot again except for fully or largely achromatic focusing (bends, sextupoles) ($\alpha_c \sim 0$)

Options to reach conformal dose distributions

aperture collimation - focusing collection

Aperture collimation on target – no focusing

+ combining energy modulation (bends + apertures) with intensity modulation

- C.-M. Ma et al. (Fox Chase Cancer Center, Philadelphia, 2006)
- **Aperture collimated beam** : distance source tumor target sets limit to beamlet size for scanning (0.5 cm radius over 1m: source divergence < 5 mrad)

Fig. 3. A schematic diagram showing the particle selection, beam collimation and output monitoring system.

Raster scanning (HIT): highest quality of tumor conformal irradiation:

3D raster scanning: lateral and depth scanning with variable energy synchrotron beams

- (1 spill= 1 energy layer)
- probably not suitable for laser

G (S)

Depth scanning with Spread-Out Bragg Peak matches well with laser ions

- Weber et al. (2000), GSI, ٠ proposed wedge absorber to broaden ΔE from synchrotron
- laser ions: naturally broad • energy profile depth scanning applicable
- quantify shots and • intensities using chromatic emittance scaling

Dose requirements

- large ∆E/E ~ 5 -10% per shot desirable for efficient use of production spectrum
- sharp fall-off at distal layer requires small ∆E/E<1%

Depth dosis profiles of 200 MeV protons in water with initial fluences 10⁹/cm².

(fitted to monoenergetic beam data P. Kundrat et al., 2007)

G 5)

Collector focused beam advantageous

solenoid or quad triplet lens

- **only aperture** ballistic collimation:
 - no margin in intensity
 - very poor use of proton yield
- **solenoid (or quad) focusing:** proton yield $2-3x10^{10}$ per shot within ε =50 mm mrad chromatic emittance
 - still factor of 30 intensity margin
 - can be used to optimize target and laser pulse towards factor 5-10 lower yield and lower (average) laser power
 - enough margin for uncertainties on acceleration physics

Yan et al. model to C⁶⁺ accelerated to 400 MeV/u

Some parameters resulting from present point study

- ideally ~ 5 SOBP's to cover full depth ~ (50-250 BP's in HIT)
- laser ions: 10x10 transverse voxels
- ~ 500 per side 10^3 per fraction if ideal jitter <5%
- ~ 5 shots to corrrect intensity jitter of 50% (no inflight control as too short)
- 5 10³ shots or 8 min per fraction for 10 Hz laser system

Example using chromatic filtering (not optimized)

used only 4 SBOP's at 200 (+/-1%), 190 (5%), 185 (5%), 165 (5%) MeV need some more to reduce dose fluctuation

Summary requirements HIT laser ions

(our point study)

Laser requirements (~ HIT parameters)

ICFA/ICUIL workshop (GSI, April 2010) recommendations

		laser p	laser carbon
rep rate		10 Hz	10 Hz
W/cm ²		1-3 10 ²¹	1-3 10 ²²
pulse duration fs		50-150	50-150
rise time fs		<20	<20
contrast 5ps/500ps		10 ⁻⁸ /10 ⁻¹²	10 ⁻⁹ /10 ⁻¹³
spot radius µm		5 10*)	5
laser power PW		1-3 10*)	10-30
laser pulse energy J		150 400*)	1500
laser average power	kW	1.5 4*)	15
laser cost target M€		2.5-5	5-10
	*) increased spot in simulations by Yan, 2009		

G (S)

Chromatic effect can be used as energy filter

- replacing bending magnet (= dispersive energy filter)
- combined function: focusing (higher yield) + energy selection

Radius of aperture well-defined

$$\mathcal{E}_{chromatic} = R_A \Omega_2 = R_A \Omega \cdot L_1 \, / \, L_2$$

 Ω divergence at source Ω_2 divergence behind solenoid L_1 distance target-solenoid L_2 distance solenoid-aperture

$$\Rightarrow R_A = \alpha_c \frac{\Delta E}{E} \Omega \cdot L_2 / L_1,$$

Some estimates of radiation load

FLUKA-calculations (I. Strasik, GSI)

Additional neutron absorber

additional neutron absorber reduces to acceptable level

Chromatic emittance scaling can be tested

our scaling predicts: $\Delta E/E= +/-0.05$ and $\Omega_{source}= 172$ mrad (10°) $\epsilon_{chromatic} \sim 100$ mm mrad 10¹⁰ protons (0.1% of total yield)

Capture of laser-accelerated proton beams with a solenoidal magnetic field

TECHNISCHE UNIVERSITÄT DARMSTADT

Chromatic emittance filter can be used for diagnosing protons generated by PHELIX

 $R_{A} = \alpha_{c} \Delta E/E \times \Omega_{source} \times L2/L1$ telescope ratio: L1: distance source-solenoid L2: distance solenoid-aperture • example: α_c=0.1 ΔE/E=0.05 Ω=0.1 rad L2/L1=10 R_A=0.005 m

Reduction of yield to $\Delta E/E \sim 0.04$ window for bunch rotation experiment is mandatory

- otherwise swamp RF + diagnostics with off-energy protons
- with a second (weaker) solenoid and a third sub-mm aperture matched to $\Delta E/E < 0.001$ measure "success" of rotation by mere intensity measurement

with RF off: measure reduced intensity (smaller $\Delta E/E$ transmission!) RF on: "same" intensity as behind first aperture, if all particles rotated (difference ~ compression factor)

Conclusions / Outlook

Beam quality determined by "collector" – scaling "Point Study" based on Yan et al. shows sufficient intensity margin (factor ~30) for solenoid collector No collector (only aperture) – little attractive Chromatic energy filter – combined function collection + energy selection (replace dipole filter) 10 Hz laser system: 1 fraction < 10 min possible Yan et al. requires 4 kW average power (10 PW peak) - cost? Optimize towards lower power and yield!

Question: is a synchrotron injection with laser ions at 10 MeV competitive with linac? (10 MeV laser ions "state of the art")

