Status Report 03/2011 Project Light - Matching the Laser p-bunch into a CH-DTL

<u>Martin Droba</u>, A.Almomani, U. Ratzinger, *IAP-Frankfurt* I. Hofmann, *GSI/HI-Jena*

Content

- Introduction
- LASIN Code Development
 - with space charge
 - with space charge + electrons
- CH-Cavity for postacceleration
 - new proposed cavity
- Outlook and Conclusion

Proton Beams

§ Transverse emittance (rms): < 0.1 mm-mrad.

S Longitudinal emittance (rms): < 0.02 keV-ns.

S Energy spread 0 - 30 MeV

Source radius: 30 – 60 μm (FWHM),

§ Bunch length: ps- range.

Selected bunch parameters:

 $10 \, MeV \pm 0.5 \, MeV$

 $\Rightarrow \Delta N \approx 10^{10}$

 $\equiv 500 \, mA$ at $325 \, MHz$

Phase space matching

- Expansion region (space charge, collective phenomena) LASIN
- Focusing and preparation W~10MeV LASIN
- Postacceleration LORASR

LASIN - Code

- Magnetic field -> Biot-Savart solver or given on mesh
- Parallel PIC-program implemented on FUCHS (CSC-Cluster)
- Full 3D calculation
- Cylindrical coordinates
- Distributed memory
- Multispecies tracking (x,y,z)
- Poisson solver iterative BiCGSTAB method
- Typically 50 Processors

LASIN-Development

• 2009-2010

Simulation without space-charge Comparison with DYNAMION, LORASR Study of Chromatic and Geometric Aberrations (*Workshop Aug.2010 – A.Almomani*)

• 2010-2011

Space charge simulations Boundary conditions Energy conservation

LASIN – with space charge

Preliminary studies with space charge:

- Parallel beam ~ 1mrad
- Important interaction
 on 1st mm
- Energy spread ?
- Opening angles ?
- Energy conservation ?
- Momentum transfer between Species ?
 - GOETHE UNIVERSITÄT FRANKFURT AM MAIN

LASIN - with space charge - no electrons

Homogenous ellipsoid R=30µm, L=22µm Bunch – equiv to 10¹⁰ protons Mesh (Nr, Nphi, Nz) = 250x30x10000, $(dr,dphi,dz) = (6\mu m, 0.2rad, 2\mu m)$

Simulation – Protons&Electrons

dt=25fs

 $\begin{array}{l} R=30\mu m,\ L=22\mu m\\ Protons\ W=10MeV\\ Electrons\ W=5.5keV\\ Particles/1\ Macroparticle=4444\ =>4.5Mio\\ Macroparticles\\ Mesh:\\ dr=6\mu m\\ d\phi=0.2rad\\ dz=2\mu m\end{array}$

Simulation - Improvements

t=0 ps dt=5fs R=30µm, L=22µm Protons W=10MeV Electrons W=5.5keV Particles/1 Macroparticle=4444 =>4.5Mio Macroparticles Mesh: dr=6µm x-axis[un] dø=0.2rad t=2.4 ps dz=2µm 20 Less separation Lower electric fields and potential -20 -40 u-axistum 10:14 z-axis[mm]

LASIN - Kinetic Energy

Plasma oscillation longitudinally Along magnetic field

Due to the higher magnetic field in propagation direction Redistribution of longitudinal momentum To the transverse direction

11

Change in transverse energy

LASIN - Energy

Ratio – variation of total energy/energy (~ 1e-5 @ 3ps)

- -Less comparing with previous case 6%
- -Longer simulation needed

-Cyclotron frequency ->characteristic time τ_c =6e-12s

-Plasma frequency -> characteristic time τ = 3.5e-13s

-Debye length @ Target $\lambda_D=0.2\mu m$

1e-4

time vs ratio dEnergy/Energy

CH- DTL for High Intensity Proton Acceleration

- Current = 500 mA
- Frequency = 325 MHz
- Energy: 11.69 23.57 MeV (FAIR prototype cavity, under production)

Emittance	values	for	the	input	and	output
distribution	n at 500	mA				

Beam	loout	Outout		
Parameters	mput	Output		
^E tr	0.69	0.84 <i>mm</i> ∙mrad		
E _{long}	7.25	10.42 <i>keV</i> ∙ns		

IAP and GSI Cooperation

After testing the coupled cavity with UNILAC-beam at Z4 area it might be installed next to Z6 area for tests with TNSA proton beams.

Design for a dedicated CH - DTL

- Current = 500 mA.
- Frequency = 325 MHz.
- Energy: 10.05 17.37 MeV.
- No. of Gaps = 9

- Magnetic Solenoid is Part of the Design.

^

Emittance values for the input and output						
distribution at 500mA						
Beam	Input	Output				
Parameters	input					
ε _{tr}	0.33	0.53 mm·mrad				
E _{long}	3.22	4.08 <i>keV∙ns</i>				

14

Study further acceleration - 4 CH - Cavities

Matched parameters used

- Current = 500 mA.
- Frequency = 325 MHz.
- Energy: 10.05 39.6 MeV.
- No. of Gaps = 33
- Magnetic Solenoid is Part of the Design.

Input:

Trans. emitt. (rms): 0.82 mm.mrad Long. emitt. (rms): 3.21 keV.ns Study further acceleration - 4 CH - Cavities

- Current = 500 mA.

- Frequency = 325 MHz.

- Energy: 10.05 39.6 MeV.
- **-** No. of Gaps = 33

- Magnetic Solenoid is Part of the Design.

Matched parameters used

Input:

Trans. emitt. (rms): 0.82 mm.mrad Long. emitt. (rms): 3.21 keV.ns 16

Study further acceleration - 4 CH - Cavities

Laser generated p-bunch parameters

3.5

3.5

4.5

4.5

100.0 %

5

5

3eam Envelope X / mm 20 15 - Frequency = 325 MHz. 10 5 - Energy: 10.05 – 39.6 MeV. 0 -5 -10 - No. of Gaps = 33-15 -20 - Magnetic Solenoid is Part of the 1.5 2.5 ο .5 2 з Beam Axis / m Design. 3eam Envelope Y / mm 20 15 10 5 80 Norm. rel.rms emittance growth 0 -5 70 -10 -15 60 -20 o 1.5 50 .5 2 2.5 з Beam Axis / m 🛦 X-X' 40 Y-Y' • W-Z 30 20 **Input:** 10 Trans. emitt. (rms): 0.08 mm.mrad 50 100 150 200 250 300 350 400 450 500 Long. emitt. (rms): 0.03 keV.ns 0 Beam Axis /cm

- Current = 500 mA.

Outlook and Conclusion

- Mesh adaption along the beam path
- Realistic distribution electrons? (input from measurements and simulations)
- Improvement of calculation speed
- Transport of whole spectrum through the solenoid

- Injection of realistic distribution into CH
- MWS Simulation
- Heat Power Calculations