

J. Pozimski

J. Pozimski

Low Energy Beam Transport Beam diagnostics

* Introduction

* Destructive methods

* RGI - Spectroscopy

* CCD - imaging

* Tomography

* Laser neutralisation

* Examples

Motivation:

A detailed knowledge of the physical properties defining the beam transport like

-external field distribution
 - residual gas pressure
 - beam current
 -beam emittance
 -beam potential (space charge)

is necessary for the

> design, optimisation and operation

> > of an

Low Energy Beam Transport section

Emittance &

emittance measurement

The behavior of an ion beam consisting of n particles can be totally described in the 6n dimensional phase space

Reduction : Transformation of density distribution

$$f_6 = f(x, y, z, p_x, p_y, p_z)$$

Reduction : transversal density distribution

$$f_4 = f(x, y, p_x, p_y)$$

Reduction : edge emittance, normalizing

$$\varepsilon_{n,x} = \beta \gamma \; \frac{F(x,x')}{\pi}$$

Redefinition : RMS from particle moments

$$\varepsilon_{n,rms} = \beta \gamma \sqrt{\langle x^2 \rangle \langle x'^2 \rangle - \langle xx'^2 \rangle}$$

Emittance measurement :

"Simultanious determination of spatial and transversal impuls distribution of an particle ensemble"

2 step process : e.g.

1 step - definition of "place"

=> by extraction of subset of particle distribution

2. step - determination of "angle"

=> determination of particle distribution after drift

NEST

NEST

Problems :

Power deposition on Slit (& Grid)

J. Pozimski

Example IFMIF : 100 keV 140 mA r<2 mm => Powerdensity >1 kW/mm²

can destroy measurement device

High voltage breakdowns : (especially near ion source or electrostatic LEBT)

The grids akt like "antennas" feeding high voltage pulses into the electronics (especially for Slit/Grid arrangements)

Secondary particles can cause :

=> High voltage breakdowns
=> Influence space charge compensation
=> Additional currents on detectors (grid !)

CCD camera

J. Pozimski

and

optical spectrometer

Determination of beam emittence by use of CCD camera measurements

J. Pozimski

"A single CCD image has all necessary information to determine the emittance using the 3 profile method"

Advantages :

a) easy setup

b) high signal to noise ratio allows use of radial intensity profile information (determination for different intensity fractions10, 20, 30...%)

c) the set of equation is overdetermined (3 profils nessesary, 512 profils available)
=> can be used to gain additional informations (space charge !)

to determine beam "emittance" from CCD images A Windows program code has been developed

J. Pozimski

CCD - tomography for determination of non symmetric particle distributions

Set up of plexiglass cylinder

Preexperiments to test the optical and vaccum technical properties of certain materials to build a transparant cylindrical "vaccum window"

Magnetic dipole and electrostatic retarding field spectrometer to determine simultaniously mass and energy of charged particles

AP-JWG

Residual ion energy spectroscopy for non destructive potential measurements using an electrostatic analyser of the Hugh-Rojanski type

NEST

J. Pozimski

Spectrometer No. 1 - Faradycup

Other diagnostics

J. Pozimski

Current transformer

- * Langmuir probes
 * RF probes
 * Electron beam probe
 * Pickups

J. Pozimski

Beam diagnostics is an important subject for design, optimisation and operation of an Low Energy Beam Transport section

> * Destructive methods like Faraday cups Emittance scanner

are well known but suffer from high power density and their influence on beam transport

* non destructive methods like RGI -spectroscopy CCD - imaging laser neutralisation

do not desturb beam transport but some applications are still subject of investigation themself.