Winterseminar Riezlern 2007

Beam Transport and Diagnostic for ,,FRANZ"

Oliver Meusel

Frankfurter Neutronenquelle am Stern-Gerlach-Zentrum

http://franz.physik.uni-frankfurt.de

UNIVERSITÄT FRANKFURT AM MAIN

Motivation Institut für Angewandte Physik Stern-Gerlach-Zentrum concept studies of accelerators for intense ion beams intense ion beams are needed for several experiments

Frankfurter Neutronenquelle am Stern-Gerlach-Zentrum

http://franz.physik.uni-frankfurt.de

UNIVERSITÄT FRANKFURT AM MAIN

Overview

neutron generator

Overview

scheme of the proton driver LINAC

technical layout of the driver accelerator

Frankfurter Neutronenquelle am Stern-Gerlach-Zentrum

HV - Terminal and Ion Source

requirements

© R. Hollinger

prototype of the high current proton source

current I = 200 mA (DC)

Proton fraction $\sim 90 \%$

emittance (rms, norm.) $\varepsilon_{\rm rms} < 0,15 \ \pi \ \rm mm \ mrad$

crossectional view of the proton source

Frankfurter Neutronenquelle am Stern-Gerlach-Zentrum

HV - Terminal and Ion Source

design of the penthode extraction system

Scheme of the extraction system

aim of the transport channel

matching of the source emittance into the acceptance of the RFQ

$$\frac{d^2}{dz^2}r_s = \frac{\varepsilon^2}{r_s^3} + \frac{K}{r_s} - \kappa (z)r_s$$

KV envelope equation describes the beam transport

Frankfurter Neutronenquelle am Stern-Gerlach-Zentrum

beam intensity – space charge

$$K = \frac{1}{4\pi\varepsilon_0} \cdot \sqrt{\frac{m_i}{2q}} \cdot \frac{I}{U^{3/2}}$$

Frankfurter Neutronenquelle am Stern-Gerlach-Zentrum

http://franz.physik.uni-frankfurt.de

UNIVERSITÄT FRANKFURT AM MAIN

space charge compensation

particle distribution inside of the beam volume

JOHANN WOLFGANG GOETHE

FRANKFURT AM MAIN

beam transport simulation using a fixed compensation degree (red) and electron temperatur of $T_e = 6 \text{ eV}$ (blue)

http://franz.physik.uni-frankfurt.de

UNIVERSITÄT FRANKFURT AM MAIN

GOETHE

JOHANN WOLFGANG

the use of solenoids guaranteed space charge compensation

UNIVERSITÄT FRANKFURT AM MAIN

GOETHE

Frankfurter Neutronenquelle am Stern-Gerlach-Zentrum

ion and electron density distribution without magnetic field

ion and electron density distribution inside of the solenoid

space charge compensation with external magnetic fields

Change of the electron density distribution as a function of beam potential and magnetic field

$$\Phi_b = \frac{er_b^2}{8m_e} \cdot B_z^2$$

Frankfurter Neutronenquelle am Stern-Gerlach-Zentrum http

http://franz.physik.uni-frankfurt.de

JOHANN WOLFGANG GOETHE UNIVERSITÄT FRANKFURT AM MAIN

emittance growth do to compensation effects

Frankfurter Neutronenquelle am Stern-Gerlach-Zentrum

magnetic chopper system

scheme of the magnetic chopper system

Frankfurter Neutronenquelle am Stern-Gerlach-Zentrum

http://franz.physik.uni-frankfurt.de

Strahldiagnose

variable

Schlitzblende

f = 250 kHz $\tau = 50 - 150 \text{ ns}$

> UNIVERS FRANKFURT AM MAIN

JOHANN WOLFGANG

GOETHE

space charge compensation of pulsed beams

Compensation process as a function of time

beam potential as a function of time

measured beam profiles as a function of time, $W_b = 92$ keV, I= 62 mA, H⁺?

Frankfurter Neutronenquelle am Stern-Gerlach-Zentrum

Puls length 2.2ms, Delay 0µs, Gate 25µs

Frankfurter Neutronenquelle am Stern-Gerlach-Zentrum

http://franz.physik.uni-frankfurt.de

JOHANN WOLFGANG GOETHE UNIVERSITÄT FRANKFURT AM MAIN

Puls length 2.2ms, Delay 25µs, Gate 25µs

Frankfurter Neutronenquelle am Stern-Gerlach-Zentrum htt

http://franz.physik.uni-frankfurt.de

JOHANN WOLFGANG GOETHE UNIVERSITÄT FRANKFURT AM MAIN

Puls length 2.2ms, Delay 50µs, Gate 25µs

JOHANN WOLFGANG GOETHE UNIVERSITÄT FRANKFURT AM MAIN

Frankfurter Neutronenquelle am Stern-Gerlach-Zentrum

Puls length 2.2ms, Delay 75µs, Gate 25µs

JOHANN WOLFGANG GOETHE UNIVERSITÄT FRANKFURT AM MAIN

Frankfurter Neutronenquelle am Stern-Gerlach-Zentrum

Puls length 2.2ms, Delay 100µs, Gate 25µs

JOHANN WOLFGANG GOETHE UNIVERSITÄT FRANKFURT AM MAIN

Frankfurter Neutronenquelle am Stern-Gerlach-Zentrum

Beam Diagnostic

slit grid emittance scanner

scheme of the slit grid emittance scanner

Frankfurter Neutronenquelle am Stern-Gerlach-Zentrum

http://franz.physik.uni-frankfurt.de

UNIVERSITÄT FRANKFURT AM MAIN

Slit Grid Emittance Scanner

production of scondary electrons

in cooperation with R. Boywitt GSI & R.J. Gobin CEA-Saclay

JOHANN WOLFGANG SOETHE UNIVERSITÄT FRANKFURT AM MAIN

Frankfurter Neutronenquelle am Stern-Gerlach-Zentrum

Slit Grid Emittance Scanner

production of scondary electrons

98 mA p - Strahl $W_b = 95$ keV detected current at the op-amp's (raw data)

profile of the raw data

Frankfurter Neutronenquelle am Stern-Gerlach-Zentrum

http://franz.physik.uni-frankfurt.de

JOHANN WOLFGANG GOETHE UNIVERSITÄT FRANKFURT AM MAIN

http://franz.physik.uni-frankfurt.de

UNIVERSITÄT FRANKFURT AM MAIN

Beam Diagnostic

Nondestructive beam diagnostic

detection of residual gas luminance

CCD-camera for the estimation of beam profile and emittance

neuronales network with optical sensor IRIS V1.1 for fast measurement of beam behavior (Redundance)

Frankfurter Neutronenquelle am Stern-Gerlach-Zentrum

RFQ-Accelerator

Radio Frequency Quadrupole

Frankfurter Neutronenquelle am Stern-Gerlach-Zentrum

http://franz.physik.uni-frankfurt.de

FRANKFURT AM MAIN

RFQ-Accelerator

Injection into the RFQ

matching into the RFQ and the influence of space charge compensation

Frankfurter Neutronenquelle am Stern-Gerlach-Zentrum

RFQ-Accelerator

Four-Rod-RFQ for high beam intensities

SARAF – Project Israel $f_0 = 176$ MHz, I = 50 mA, P = 64 kW/m, cw - operation

view inside of the RFQ

comissioning of the RFQ

Frankfurter Neutronenquelle am Stern-Gerlach-Zentrum

http://franz.physik.uni-frankfurt.de

UNIVERSITÄT FRANKFURT AM MAIN

CH-Cavity

drift tube accelerator

© H. Liebermann

View into the CH cavity

assembled CH cavity

Frankfurter Neutronenquelle am Stern-Gerlach-Zentrum

CH Cavity

UNIVERSITÄT FRANKFURT AM MAIN

GOETHE

JOHANN WOLFGANG

Bunch Compressor

Mobley type bunch compressor

scheme of the Mobley type bunch compressor

Production target

Neutron production

scheme of the target and detctor system

Frankfurter Neutronenquelle am Stern-Gerlach-Zentrum

Produktionstarget

Produktionsreaktion

 $_{1}H^{1}+_{3}Li^{7}\rightarrow_{4}Be^{7}+_{0}n^{1}-1,646 \text{ MeV}$

Neutronen-Ausbeute und Neutronen-Energie als Funktion der Primärstrahlenergie

Wirkungsquerschnitte für die Produktion der Neutronen als Funktion der Primärstrahlenergie

Detector system

 4π BaF₂- Detector In cooperation with FZ Karlsruhe

© http://nuclear-astrophysics.fzk.de/

© http://nuclear-astrophysics.fzk.de/

 4π scintillator sphere for the detection of neutron capturing processes

Photography of the detector system in Karlsruhe

Frankfurter Neutronenquelle am Stern-Gerlach-Zentrum

Experiments

What can we learn about the element synthesis?

relative incidence of isotopes in the solar system

Experiments

http://www.iaea.org/inis/aws/fnss/

Accelerator Driven Systems ADS transmutation of radiactive wast.

http://www.gsi.de/fair/experiments/CBM/

Detector developement at IKF e.g. test of the Monolithic Si - Pixel – Detectors (MAPS), is relevant for the FAIR - CBM - experiment

http://www.gsi.de/fair/experiments/superfrs/

Experiments using radioactive isotopes from FAIR - Super – FRS implanted in carbon foils $\geq 10^{15}$ atoms/unit

material scince, neutron radiography, etc.

JOHANN WOLFGANG

Frankfurter Neutronenquelle am Stern-Gerlach-Zentrum

Outlook

- all components of the driver Linac are a big challenge
- FRANZ will give the possibility for experiments with an intense proton beam
- FRANZ is a long term project and of course for the education of students
- the neutron generator leads into cooperation with e.g. IKF, GSI and FZ Karlsruhe

Danke !

Für die Unterstützung danke ich:

LINAC-AG	http://linac.physik.uni-frankfurt.de/
AG-Schempp	http://iaprfq.physik.uni-frankfurt.de/
NNP-AG	http://nnp.physik.uni-frankfurt.de/

JOHANN WOLFGANG 😨 GOETHE

Frankfurter Neutronenquelle am Stern-Gerlach-Zentrum

http://franz.physik.uni-frankfurt.de

UNIVERSITÄT FRANKFURT AM MAIN