Transport and Acceleration of Intense Ion Beams using Space Charge Compensation

Oliver Meusel

Riezlern 2008

p nonneutral plasma physics group

nnp

Motivation

nnp

Space Charge Compensation

$$\frac{d^{2}}{dz^{2}}r_{S} = \frac{\varepsilon^{2}}{r_{S}^{3}} + \frac{K}{r_{S}} - \kappa (z)r_{S}$$

$$K = \frac{1}{4\pi\varepsilon_0} \cdot \sqrt{\frac{m_i}{2q}} \cdot \frac{I}{U^{3/2}}$$

Capturing of compensation electrons (CE) within the beam potential

particle distribution within the beam volume

FRANKFURT AM MAIN

Transport without focussing fields – beam drift

Numerical simulation using the LINTRA code

selfconsistent estimation of the CEdensity distribution

© cea saclay, R. Gobin et. al.

measured space charge compensation as a function of the beam radius

nnp nonneutral plasma physics group

JOHANN WOLFGANG OF GOETHE UNIVERSITÄT FRANKFURT AM MAIN

Loss Channel for the CE

beam focussing leads to global decompensation

Influence of beam optics on CE density distribution

decompensation

compensation

nnp nonneutral plasma physics group

UNIVERSITAT FRANKFURT AM MAIN

Influence of beam optics on CE density distribution - Solenoid

particle density distribution outside of the solenoid

particle density distribution inside of the solenoid

changing of the density distribution of the compensation electrons along the beam path through a solenoid

$$\Phi_b = \frac{er_b^2}{8m_e} \cdot B_z^2$$

JOHANN WOLFGANG GOETHE UNIVERSITÄT FRANKFURT AM MAIN

nnp nonneutral plasma physics group

Numerical Simulation of Space Charge Compensation in a Solenoid

a) Measured phase space distribution He⁺ -beam 9 mA @ 12 keV, b) transport simulation and calculated envelope

UNIV FRANKFURT AM MAIN

F

GOETHE

JOHANN WOLFGANG

First Approximation of CE Density Distribution

Field distribution of an homogenious filled electron columne inserted into the solenoid

Measured phase space distribution of an intense proton beam $W_b = 95 \text{ keV I} = 98 \text{ mA}$

Gabor Lenses

Focussing under fully space charge compensation

Parameters of the lens: $\Phi_{A,max} = 65 \text{ kV}$ $B_{z,max} = 2,2 \text{ kG}$

High field Gabor lens (HGL) for beam energies up to 500 keV

JOHANN WOLFGANG COETHE

FRANKFURT AM MAIN

nnp

Focussing and Mapping capabilities of Gabor Lenses

Filling factor as a function of the lens parameters

Emittance growth as a function of the lens parameters

JOHANN WOLFGANG 💓 GOETHE

and Acceleration of Particles ?

Plasma filled wave guide

JOHANN WOLFGANG GOETHE UNIVERSITÄT FRANKFURT AM MAIN

Three Segmented Gabor Lens

Three Segmented Gabor Lens as a Wave Guide

Alfven wave propagation

$$\Delta n_e = \Delta v_p$$

Open Questions

- stable confinement with longitudinal density gradient ?
 - thermalization with longitudinal density gradient ?

• diagnostic of wave propagation ?

FRANKFURT AM MAIN

Energy Spectra of Extracted RGI's

nonneutral plasma physics group nnp

UNIVER S FRANKFURT AM MAIN

Acceleration of the RGI's

JOHANN WOLFGANG COETHE

FRANKFURT AM MAIN

nnp nonneutral plasma physics group

