Hochstromspeicherring für Protonen und Ionen

Martin Droba J.W.Goethe Universität Frankfurt am Main

Unter Mitarbeit von: N.Joshi, O. Meusel, K.Schulte, U.Ratzinger

Hochstromspeicherring (MSR)

- Speicherringe mit longitudinalem Magnetfeld
- Multi-Ionisationsprozesse von leichten Atomen bei Wechselwirkung mit intensiven niederenergetischen Protonstrahlen (W~150 keV)
- Raumladungskompensation Restgaselektronen

Elektronenstrahl

- Strahlkühlung, Kristalline-Strahlen
- Fusionsquerschnitte
- Mehrteilchenreaktionen Multispezies
- Sekundärteilchenspeicherrung

¹¹B+p Reaction

Fusionsreaktion

¹¹B+p -> 3α (8.7MeV);

Reaktionsquerschnitt $\sigma_{max} \sim 10^{\text{-}28}\,m^2$

Relaxationsprozesse – Strahl zur NNP

Figure-8 Hochstromspeicherring

Zyklotronfrequenz ω_c [s ⁻¹] @5T	$4.8 \cdot 10^8$
Brillouin-limit n _B [m ⁻³]	6.6·10 ¹⁶
Strahlradius a[m]	>0.02
Debye-Länge [m]	3.10-4
ExB Rotationsfrequenz [s]	5.2.10-10
UHV (n ~ 10^{12} m ⁻³ ~ $4 \cdot 10^{-11}$ hPa) Stoßfrequenz $\tau_c[s]$	12.5
NNP Einschlusszeit in toroidalen Magnetfeldern (Crooks 1994)	$\tau \approx \tau_c \cdot (R/\lambda_D)^2$
NNP Einschlusszeiten auf magnetischen Flächen (Pedersen 2003)	$\tau \approx \tau_c \cdot (a/\lambda_D)^4$

Simulationsprogramme

- Magnetfeld Biot-Savart solver (Predictor-Corrector method, Field-line integration –1D information)
- Frequenzdekomposition FFT (1D => 2D)
- Generierung von numerischen Gitter in Clebsch-Koordinaten ψ <0,1>, θ <0,2 π >, ξ <0,2 π >
- Poissongleichung (PIC Particle in cell)
- Bewegungsgleichungen in Guiding-center-Koordinaten

Parallele Rechnercluster CSC (Centre for Scientific Computing)

Bis zu 60 Prozessoren, 10Mio Makroteilchen

Beispiel – Ladungsverteilung

Potenzial in der θ , ψ -Fläche, ξ =const

Potenzial entlang der ξ , ψ -Koordinate, θ =const

Konstruktion der Gabor Linse

- 3 Elektroden und
- **3 Helmholtzspulen Paare** zur Erzeugung von Feldgradienten/Temperaturgradienten
- Schauglas

Einblick auch in der longitudinalen Ebene

Diocotron Instabilität - ExB

Simulation – Gabor-Linse Dargestellte ist die in z-Richtung integrierte Dichteverteilung Multiteilchen auf 36 Prozessoren Typische Zeitskalen ~ 1µs Messung – Gabor-Linse Mit CCD-Kamera aufgenommene Leuchtstärke einer eingeschlossener NNP

Injektionexperiment

Toroidale Strahltransport

Ausblick

- Raumladungskompensation im torodialen Strahltransport
- Untersuchung von Strahlinstabilitäten
- Injektionsexperiment
- Evaluation von Simulationsprogrammen
- Weiterentwicklung von NNP-Diagnose

