Nanosekunden Bunch-Kompression für intensive Protonenstrahlen

Long Phi Chau

FRANZ (<u>Frankfurt Neutron Source at the Stern-Gerlach-Zentrum</u>) / *Seminar "Aktuelle Probleme der Beschleuniger- und Plasmaphysik, 6. Juni 2008*

NNP(\underline{N} on- \underline{N} eutral- \underline{P} lasma)-Group (1/57)

Überblick

- Einführung:
 - Definition von Bunch-Kompression
 - Anwendungsbereiche f
 ür Bunch-Kompression
 - Anforderung f
 ür FRANZ
- Möglichkeiten der Bunch-Kompression:
 - Grundidee
 - > Rebuncher-Konzept: Energiedifferenz
 - Kombination: Energie- und Wegdifferenz
- Untersuchte Geometrien:
 - > 1-Dipol-System: ohne Gradienten (Mobley-Konzept)
 - > 2-Dipol-System: Rechteck-Magnete mit Gradienten
 - > 3-Dipol-System: Rechteck-Magnete 2 homogen und 2 mit Gradienten
 - > 4-Dipol-System: Sektor-Magnete 2 homogen und 2 mit Gradienten
- Kantenfokussierung
- Numerik

Überblick

- Einführung:
 - Definition von Bunch-Kompression
 - > Anwendungsbereiche f
 ür Bunch-Kompression
 - Anforderung f
 ür FRANZ
- Möglichkeiten der Bunch-Kompression:
 - Grundidee
 - Rebuncher-Konzept: Energiedifferenz
 - Kombination: Energie- und Wegdifferenz
- Untersuchte Geometrien:
 - > 1-Dipol-System: ohne Gradienten (Mobley-Konzept)
 - > 2-Dipol-System: Rechteck-Magnete mit Gradienten
 - > 4-Dipol-System: Rechteck-Magnete 2 homogen und 2 mit Gradienten
 - > 4-Dipol-System: Sektor-Magnete 2 homogen und 2 mit Gradienten
- Strahldynamik, Numerik:

Einführung: Definition von Bunch-Kompression

FRANZ (<u>Frankfurt N</u>eutron Source at the Stern-Gerlach-<u>Z</u>entrum) / Seminar "Aktuelle Probleme der Beschleuniger- und Plasmaphysik, 6. Juni 2008 NNP(\underline{N} on- \underline{N} eutral- \underline{P} lasma)-Group (4/57)

JOHANN WOLFGANG GOETHE UNIVERSITÄT FRANKFURT AM MAIN

Motivation: Anwendungsbereiche von Bunch-Kompressoren

- Anpassung der longitudinalen Akzeptanz für LINAC's
 - > "Free Electron Laser" (FLASH, TESLA)
 - » "Linear Collider" (in Planung ILC)
- Intensitätserhöhung von geladenen Strahlen:
 - » "Warm Dense Matter"
 - "Heavy Ion Fusion"
 - > Treiberstrahl f
 ür intensive Neutronenquellen (FRANZ, ...)

Motivation: Anforderung von FRANZ

Überblick

- Einführung:
 - Definition von Bunch-Kompression
 - Anwendungsbereiche f
 ür Bunch-Kompression
 - Anforderung f
 ür FRANZ
- Möglichkeiten der Bunch-Kompression:
 - Grundidee
 - > Rebuncher-Konzept: Energiedifferenz
 - Kombination: Energie- und Wegdifferenz
- Untersuchte Konzepte:
 - > 1-Dipol-System: ohne Gradienten (Mobley-Konzept)
 - > 2-Dipol-System: Rechteck-Magnete mit Gradienten
 - > 3-Dipol-System: Rechteck-Magnete 2 homogen und 2 mit Gradienten
 - > 4-Dipol-System: Sektor-Magnete 2 homogen und 2 mit Gradienten
- Kanfokussierung
- Numerik

Grundideen der Bunch-Kompression

FRANZ (<u>Frankfurt Neutron Source at the Stern-Gerlach-Zentrum</u>) Seminar "Aktuelle Probleme der Beschleuniger- und Plasmaphysik, 6. Juni 2008

NNP(<u>Non-N</u>eutral-<u>P</u>lasma)-Group (8/57)

(ohne Raumladung, keine intrinsische Energievariation der Mikro-Bunche)

FRANZ (<u>Frankfurt N</u>eutron Source at the Stern-Gerlach-<u>Z</u>entrum) / Seminar "Aktuelle Probleme der Beschleuniger- und Plasmaphysik, 6. Juni 2008 NNP(\underline{N} on- \underline{N} eutral- \underline{P} lasma)-Group (9/57)

JOHANN WOLFGANG 💱 GOETHE

UNIVERSITÄT frankfurt am main

 $_{1}H^{1}+_{3}Li^{7}\rightarrow_{4}Be^{7}+_{0}n^{1}-1,646 \text{ MeV}$

Neutronen-Ausbeute in Vorwärts-Richtung.

Neutronen-Produktionsquerschnitte.

=> akzeptable Energie-Unschärfe im Protonen-Strahl: $\Delta W = \pm 100[keV]$ => Konzept der Bunch-Kompression durch Energiedifferenz ist *ungeeignet*!

 FRANZ (Frankfurt Neutron Source at the Stern-Gerlach-Zentrum)
 /

 Seminar "Aktuelle Probleme der Beschleuniger- und Plasmaphysik, 6. Juni 2008
 /

 $NNP(\underline{N}on-\underline{N}eutral-\underline{P}lasma)$ -Group (10/57)

Kombination von den Konzepten der Energie- und Wegdifferenz

FRANZ (<u>Frankfurt N</u>eutron Source at the Stern-Gerlach-<u>Z</u>entrum) / Seminar "Aktuelle Probleme der Beschleuniger- und Plasmaphysik, 6. Juni 2008 NNP(\underline{N} on- \underline{N} eutral- \underline{P} lasma)-Group (11/57)

Trajektorien-Separation durch Energievariation kombiniert mit einem Dipol

NNP(\underline{N} on- \underline{N} eutral- \underline{P} lasma)-Group (12/57)

Trajektorien-Separation durch Energievariation kombiniert mit einem Dipol

FRANZ (<u>Frankfurt N</u>eutron Source at the Stern-Gerlach-<u>Z</u>entrum) / Seminar "Aktuelle Probleme der Beschleuniger- und Plasmaphysik, 6. Juni 2008 NNP(\underline{N} on- \underline{N} eutral- \underline{P} lasma)-Group (13/57)

JOHANN WOLFGANG ROETHE UNIVERSITÄT FRANKFURT AM MAIN

Trajektorien-Seperation durch Energievariation kombiniert mit einem Dipol

FRANZ (<u>Frankfurt N</u>eutron Source at the Stern-Gerlach-<u>Z</u>entrum) / Seminar "Aktuelle Probleme der Beschleuniger- und Plasmaphysik, 6. Juni 2008 NNP(Non-Neutral-Plasma)-Group (14/57)

JOHANN WOLFGANG GOETHE UNIVERSITÄT FRANKFURT AM MAIN

Zusammenfassung: Möglichkeiten der Bunch-Kompression

NNP(\underline{N} on- \underline{N} eutral- \underline{P} lasma)-Group (15/57)

Überblick

- Einführung:
 - Definition von Bunch-Kompression
 - Anwendungsbereiche f
 ür Bunch-Kompression
 - Anforderung f
 ür FRANZ
- Möglichkeiten der Bunch-Kompression:
 - Grundidee
 - > Rebuncher-Konzept: Energiedifferenz
 - > Kombination: Energie- und Wegdifferenz
- Untersuchte Geometrien:
 - > 1-Dipol-System: ohne Gradienten (Mobley-Konzept)
 - > 2-Dipol-System: Rechteck-Magnete mit Gradienten
 - > 3-Dipol-System: Rechteck-Magnete 2 homogen und 1 mit Gradienten
 - 4-Dipol-System: Sektor-Magnete 2 homogen und 2 mit Gradienten
- Numerik, Strahldynamik:

1-Dipol-System: ohne Gradienten (Mobley-Konzept)

FRANZ (<u>Frankfurt Neutron Source at the Stern-Gerlach-Zentrum</u>) / Seminar "Aktuelle Probleme der Beschleuniger- und Plasmaphysik, 6. Juni 2008

NNP(\underline{N} on- \underline{N} eutral- \underline{P} lasma)-Group (17/57)

1-Dipol-System: ohne Gradienten (Mobley-Konzept)

FRANZ (<u>Frankfurt N</u>eutron Source at the Stern-Gerlach-<u>Z</u>entrum) / Seminar "Aktuelle Probleme der Beschleuniger- und Plasmaphysik, 6. Juni 2008

NNP(<u>Non-N</u>eutral-<u>P</u>lasma)-Group (18/57) Johann Wolfgang goethe

FRANZ (<u>Frankfurt Neutron Source at the Stern-Gerlach-Zentrum</u>) / Seminar "Aktuelle Probleme der Beschleuniger- und Plasmaphysik, 6. Juni 2008

NNP(<u>Non-N</u>eutral-<u>P</u>lasma)-Group (19/57) JOHANN WOLFGANG

R.C.M obley: Phys. Rev. 88(2), 360-361 (1951)

Präsentiert in Riezlern 2006

FRANZ (<u>Frankfurt N</u>eutron Source at the Stern-Gerlach-<u>Z</u>entrum) / Seminar "Aktuelle Probleme der Beschleuniger- und Plasmaphysik, 6. Juni 2008

NNP(<u>Non-N</u>eutral-<u>P</u>lasma)-Group (20/57)

R C .M obley: Phys. Rev. 88(2), 360-361 (1951)

Präsentiert in Riezlern 2006

UNIVERSITÄT FRANKFURT AM MAIN

Seminar "Aktuelle Probleme der Beschleuniger- und Plasmaphysik, 6. Juni 2008

R.C.M obley: Phys. Rev. 88(2), 360-361 (1951)

Präsentiert in Riezlern 2006

FRANKFURT AM MAIN

2-Dipol-System: Rechteck-Magnete mit Gradienten

Präsentiert in Riezlern 2007

• Gradienten notwendig für symmetrische Abbildung

<u>xxxxxxx</u> xxxxxxxxxxxxxxxxxxxxxxxxxxxxx								
α[°] Ι	w_g[m]	w1[m]	w2[m]	b1[m]	ψ[°]	<mark>β[°]</mark> Ι	m_f[T]	R[m]
40.00	3.5656	1.0940	0.4161	0.2727	47.50	70.00	0.91610	0.2232
43.45	3.4543	1.0597	0.3965	0.2710	45.77	68.27	0.89918	0.2274
47.22	3.3423	1.0256	0.3764	0.2692	43.89	66.39	0.88011	0.2323
51.30	3.2309	0.9922	0.3558	0.2674	41.85	64.35	0.85875	0.2381
55.78	3.1193	0.9594	0.3346	0.2656	39.61	62.11	0.83453	0.2450
60.69	3.0079	0.9273	0.3128	0.2638	37.15	59.65	0.80704	0.2534
66.14	2.8963	0.8961	0.2901	0.2620	34.43	56.93	0.77550	0.2637
72.20	2.7849	0.8659	0.2663	0.2602	31.40	53.90	0.73919	0.2766
79.04	2.6730	0.8369	0.2410	0.2586	27.98	50.48	0.69677	0.2935
xxxxxxx	xxxxxxx	xxxxxxx	(XXXXXXX)	xxxxxxx	xxxxxx	xxxxxx	xxxxxxxx	xxxxxx

Verbesserung:

- 4 Kanten für Fokussierung
- erste Drift: 24%
- Winkel am Kicker: 25%
- maximales Feld < 1T

Unzufrieden stellend:

- Winkeldifferenz
- Trans. Abstände
- Großen Gradient
- Gesamtweg: +30%
 (<u>9 Bunche</u> à 150mA)

 FRANZ (Frankfurt Neutron Source at the Stern-Gerlach-Zentrum)
 /

 Seminar "Aktuelle Probleme der Beschleuniger- und Plasmaphysik, 6. Juni 2008

NNP(\underline{N} on- \underline{N} eutral- \underline{P} lasma)-Group (23/57)

Neues Konzept:

- 2 homogene Dipole
- 1 Dipol mit Gradienten

Vorteile:

- Konstantes Gap
 im ersten und letzten Dipol
- Größerer transversaler Abstand im Dipol mit Gradient
- Nur 1 Dipol mit Gradient
- Kompaktere Geometrie
- Mehr Parameter zur transversalen Fokussierung

 FRANZ (Frankfurt Neutron Source at the Stern-Gerlach-Zentrum)
 /

 Seminar "Aktuelle Probleme der Beschleuniger- und Plasmaphysik, 6. Juni 2008
 /

NNP(<u>Non-N</u>eutral-<u>P</u>lasma)-Group (24/57)

Geometrie-Optimierung:

- Erste Drift < 1[*m*]
- Gesamtweglänge pro Bahn < 4.0[*m*]
- Abstand der Trajektorien maximieren
- max. Ablenkung $\Delta \alpha < 20[deg]$
- $|\alpha_i \alpha_{i+1}| \sim \text{const}$

L = 1.000[m]a = 0.200[m]d1 = 0.300[m]d2 = 0.100[m] $R1 = 0.450[m] \iff B1 = 0.46473[T]$ OMEGA = -38.000[deg]ff = a/L = 0.200R1/d1 = 1.500

Anzahl der Bunche:N = 9Gesamtwegunterschied: $\Delta w_{ges} = (N-1) \cdot \beta \lambda = 0.9137[m]$ Anfangswinkel: $\alpha_1 = 17[deg]$

FRANZ (<u>Frankfurt N</u>eutron Source at the Stern-Gerlach-<u>Z</u>entrum) / Seminar "Aktuelle Probleme der Beschleuniger- und Plasmaphysik, 6. Juni 2008

NNP(\underline{N} on- \underline{N} eutral- \underline{P} lasma)-Group (26/57)

JOHANN WOLFGANG

UNIVERSITÄT Frankfurt am main

GOETHE

FRANZ (Frankfurt Neutron Source at the Stern-Gerlach-Zentrum) / Seminar "Aktuelle Probleme der Beschleuniger- und Plasmaphysik, 6. Juni 2008

NNP(<u>Non-N</u>eutral-<u>P</u>lasma)-Group (27/57)

Neues Konzept:

- 2 homogene Sektor-Magnete
- 2 Sektor-Magnete mit Gradienten

Vorteile:

- Konstantes Gap
 im ersten und letzten Dipol
- Größerer transversaler Abstand im Dipol mit Gradient
- Bessere Kontrolle über Gradienten
- Kompaktere Geometrie
- Mehr Parameter zur transversalen Fokussierung
- Mehr Kontrolle über alle(!) geometrischen Parameter

NNP(<u>Non-N</u>eutral-<u>P</u>lasma)-Group (28/57)

Neues Konzept:

- 2 homogene Sektor-Magnete
- 2 Sektor-Magnete mit Gradienten

Vorteile:

- Konstantes Gap
 im ersten und letzten Dipol
- Größerer transversaler Abstand im Dipol mit Gradient
- Bessere Kontrolle über Gradienten
- Kompaktere Geometrie
- Mehr Parameter zur transversalen Fokussierung
- Mehr Kontrolle über alle(!) geometrischen Parameter

NNP(<u>Non-N</u>eutral-<u>P</u>lasma)-Group (29/57)

Neues Konzept:

- 2 homogene Sektor-Magnete
- 2 Sektor-Magnete mit Gradienten

Vorteile:

- Konstantes Gap
 im ersten und letzten Dipol
- Größerer transversaler Abstand im Dipol mit Gradient
- Bessere Kontrolle über Gradienten
- Kompaktere Geometrie
- Mehr Parameter zur transversalen Fokussierung
- Mehr Kontrolle über alle(!) geometrischen Parameter

NNP(<u>Non-N</u>eutral-<u>P</u>lasma)-Group (30/57)

Neues Konzept:

- 2 homogene Sektor-Magnete
- 2 Sektor-Magnete mit Gradienten

Vorteile:

- Konstantes Gap
 im ersten und letzten Dipol
- Größerer transversaler Abstand im Dipol mit Gradient
- Bessere Kontrolle über Gradienten
- Kompaktere Geometrie
- Mehr Parameter zur transversalen Fokussierung
- Mehr Kontrolle über alle(!) geometrischen Parameter

NNP(<u>Non-N</u>eutral-<u>P</u>lasma)-Group (31/57)

Neues Konzept:

- 2 homogene Sektor-Magnete
- 2 Sektor-Magnete mit Gradienten

Vorteile:

- Konstantes Gap
 im ersten und letzten Dipol
- Größerer transversaler Abstand im Dipol mit Gradient
- Bessere Kontrolle über Gradienten
- Kompaktere Geometrie
- Mehr Parameter zur transversalen Fokussierung
- Mehr Kontrolle über alle(!) geometrischen Parameter

NNP(<u>Non-N</u>eutral-<u>P</u>lasma)-Group (32/57)

Neues Konzept:

- 2 homogene Sektor-Magnete
- 2 Sektor-Magnete mit Gradienten

Vorteile:

- Konstantes Gap
 im ersten und letzten Dipol
- Größerer transversaler Abstand im Dipol mit Gradient
- Bessere Kontrolle über Gradienten
- Kompaktere Geometrie
- Mehr Parameter zur transversalen Fokussierung
- Mehr Kontrolle über alle(!) geometrischen Parameter

NNP(<u>Non-N</u>eutral-<u>P</u>lasma)-Group (33/57)

Neues Konzept:

- 2 homogene Sektor-Magnete
- 2 Sektor-Magnete mit Gradienten

Vorteile:

- Konstantes Gap
 im ersten und letzten Dipol
- Größerer transversaler Abstand im Dipol mit Gradient
- Bessere Kontrolle über Gradienten
- Kompaktere Geometrie
- Mehr Parameter zur transversalen Fokussierung
- Mehr Kontrolle über alle(!) geometrischen Parameter

NNP(<u>Non-N</u>eutral-<u>P</u>lasma)-Group (34/57)

Neues Konzept:

- 2 homogene Sektor-Magnete
- 2 Sektor-Magnete mit Gradienten

Vorteile:

- Konstantes Gap
 im ersten und letzten Dipol
- Größerer transversaler Abstand im Dipol mit Gradient
- Bessere Kontrolle über Gradienten
- Kompaktere Geometrie
- Mehr Parameter zur transversalen Fokussierung
- Mehr Kontrolle über alle(!) geometrischen Parameter

NNP(<u>Non-N</u>eutral-<u>P</u>lasma)-Group (35/57)

Neues Konzept:

- 2 homogene Sektor-Magnete
- 2 Sektor-Magnete mit Gradienten

Vorteile:

- Konstantes Gap
 im ersten und letzten Dipol
- Größerer transversaler Abstand im Dipol mit Gradient
- Bessere Kontrolle über Gradienten
- Kompaktere Geometrie
- Mehr Parameter zur transversalen Fokussierung
- Mehr Kontrolle über alle(!) geometrischen Parameter

NNP(<u>Non-N</u>eutral-<u>P</u>lasma)-Group (36/57)

Neues Konzept:

- 2 homogene Sektor-Magnete
- 2 Sektor-Magnete mit Gradienten

Vorteile:

- Konstantes Gap
 im ersten und letzten Dipol
- Größerer transversaler Abstand im Dipol mit Gradient
- Bessere Kontrolle über Gradienten
- Kompaktere Geometrie
- Mehr Parameter zur transversalen Fokussierung
- Mehr Kontrolle über alle(!) geometrischen Parameter

NNP(<u>Non-N</u>eutral-<u>P</u>lasma)-Group (37/57)

FRANZ (<u>Frankfurt N</u>eutron Source at the Stern-Gerlach-<u>Z</u>entrum) / Seminar "Aktuelle Probleme der Beschleuniger- und Plasmaphysik, 6. Juni 2008 NNP(<u>Non-N</u>eutral-<u>P</u>lasma)-Group (38/57) JOHANN WOLFGANG GOETHE UNIVERSITÄT FRANKFURT AM MAIN

FRANZ (Frankfurt Neutron Source at the Stern-Gerlach-Zentrum) / Seminar "Aktuelle Probleme der Beschleuniger- und Plasmaphysik, 6. Juni 2008

NNP(Non-Neutral-Plasma)-Group (39/57)

UNIVERSITÄT FRANKFURT AM MAIN

- Die Entwicklung vom Mobley-Konzept bis zum favorisierten 4-Dipol-System wurde präsentiert.
- Hinreichend flexibles System wurde gefunden.
- Kontrolle über kritische Parameter möglich.
- Einführung von weiteren Parameter wird durch den Aufwand nicht gerechtfertigt
- Endgültiges Design wird durch Strahldynamik festgelegt.

Überblick

- Einführung:
 - Definition von Bunch-Kompression
 - Anwendungsbereiche f
 ür Bunch-Kompression
 - Anforderung f
 ür FRANZ
- Möglichkeiten der Bunch-Kompression:
 - > Grundidee
 - Rebuncher-Konzept: Energiedifferenz
 - > Kombination: Energie- und Wegdifferenz
- Untersuchte Geometrien:
 - > 1-Dipol-System: ohne Gradienten (Mobley-Konzept)
 - > 2-Dipol-System: Rechteck-Magnete mit Gradienten
 - > 4-Dipol-System: Rechteck-Magnete 2 homogen und 2 mit Gradienten
 - > 4-Dipol-System: Sektor-Magnete 2 homogen und 2 mit Gradienten
- Kantenfokussierung
- Numerik

Kantenfokussierung

Beim Durchlaufen der Kante eines Dipols erfahren die Teilchen eine *Impulsänderung* abhängig vom β , g, ρ_0 , K und ihrer Positionen (x_0 , y_0) bezüglich des Sollteilchen.

$$x = x_{0} , \quad x' = \Delta x' + x'_{0}$$

$$y = y_{0} , \quad y' = \Delta y' + y'_{0}$$
radialer Kick:
$$\Delta x' = +\frac{\tan(\beta)}{\rho_{0}} \cdot x_{0} = k_{x} \cdot x_{0}$$

axialer Kick:
$$\Delta y' = -\frac{\tan(\beta_{eff})}{\rho_{0}} \cdot y_{0} = k_{y} \cdot y_{0}$$

$$\tan(\beta_{eff}) = \tan\beta - \underbrace{\left(\frac{g}{\rho_{0}} \cdot K\right) \cdot \frac{1 + \sin^{2}\beta}{\cos^{3}\beta}}_{\text{Korrektur in 1. Ordnung von}\left(\frac{g}{\rho_{0}}\right)} = \tan\beta - \widetilde{K} \cdot \frac{1 + \sin^{2}\beta}{\cos^{3}\beta}$$

$$\widetilde{K} = \frac{g}{\rho_{0}} \cdot K$$

$$eta$$
 > 0 , x_0 >0 , y_0 >0

=> defokussierend in x-Richtung
=> fokussierend in y-Richtung

 β = Kantenwinkel

$$g = \text{Gap}$$

- ρ_0 = mittlerer Umlenkradius
- K = Randfeld-Integral (später mehr...)

FRANZ (<u>Frankfurt N</u>eutron Source at the Stern-Gerlach-<u>Z</u>entrum) / Seminar "Aktuelle Probleme der Beschleuniger- und Plasmaphysik, 6. Juni 2008 NNP(\underline{N} on- \underline{N} eutral- \underline{P} lasma)-Group (42/57)

Kantenfokussierung

Beim Durchlaufen der Kante eines Dipols erfahren die Teilchen eine *Impulsänderung* abhängig vom β , g, ρ_0 , K und ihrer Positionen (x_0 , y_0) bezüglich des Sollteilchen.

$$x = x_{0} , \quad x' = \Delta x' + x'_{0}$$

$$y = y_{0} , \quad y' = \Delta y' + y'_{0}$$
radialer Kick:
$$\Delta x' = +\frac{\tan(\beta)}{\rho_{0}} \cdot x_{0} = k_{x} \cdot x_{0}$$

axialer Kick:
$$\Delta y' = -\frac{\tan(\beta_{eff})}{\rho_{0}} \cdot y_{0} = k_{y} \cdot y_{0}$$

$$\tan(\beta_{eff}) = \tan\beta - \left(\frac{g}{\rho_{0}} \cdot K\right) \cdot \frac{1 + \sin^{2}\beta}{\cos^{3}\beta} = \tan\beta - \widetilde{K} \cdot \frac{1 + \sin^{2}\beta}{\cos^{3}\beta}$$

$$\widetilde{K} = \frac{g}{\rho_{0}} \cdot K$$

Korrektur in 1. Ordnung von $\left(\frac{g}{\rho_{0}}\right)$

 \widetilde{K} => Symmetrie der Abbildung

 ρ_0 => Stärke der Abbildung

 β = Kantenwinkel

$$g = \text{Gap}$$

- $\rho_0 =$ mittlerer Umlenkradius
- K = Randfeld-Integral (später mehr...)

FRANZ (<u>Frankfurt N</u>eutron Source at the Stern-Gerlach-<u>Z</u>entrum) / Seminar "Aktuelle Probleme der Beschleuniger- und Plasmaphysik, 6. Juni 2008 NNP(\underline{N} on- \underline{N} eutral- \underline{P} lasma)-Group (43/57)

Randfeld-Integral

- Typische Werte für reale Kanten: K= 0.3 ... 1.0, K=0 <=> "hard edge"
- Für g=const => K= "Maß für die Länge des Randfeld"

je größer K, desto länger ist das Randfelds

 K läßt sich berechnen, wenn die Feldverteilung in ξ-Richtung beispielsweise aus Meßungen oder aus Simulationsprogrammen bekannt ist

NNP(<u>Non-Neutral-Plasma</u>)-Group (44/57) JOHANN WOLFGANG

Randfeld-Integral

 $K \approx 0.45$

Rogowski-Form: $K \approx 0.70$

FRANZ (<u>Frankfurt Neutron Source at the Stern-Gerlach-Zentrum</u>) / Seminar "Aktuelle Probleme der Beschleuniger- und Plasmaphysik, 6. Juni 2008

NNP(\underline{N} on- \underline{N} eutral- \underline{P} lasma)-Group (45/57)

Kantenfokussierung mit den Paramter des 4-Dipol-System

FRANZ (<u>Frankfurt Neutron Source at the Stern-Gerlach-Zentrum</u>) / Seminar "Aktuelle Probleme der Beschleuniger- und Plasmaphysik, 6. Juni 2008

NNP(<u>N</u>on-<u>N</u>eutral-<u>P</u>lasma)-Group (46/57) Johann Wolfgang 💥 goethe

Kantenfokussierung mit den Paramter des 4-Dipol-System

FRANZ (<u>Frankfurt N</u>eutron Source at the Stern-Gerlach-<u>Z</u>entrum) / Seminar "Aktuelle Probleme der Beschleuniger- und Plasmaphysik, 6. Juni 2008

NNP(<u>N</u>on-<u>N</u>eutral-<u>P</u>lasma)-Group (47/57)

Überblick

- Einführung:
 - Definition von Bunch-Kompression
 - Anwendungsbereiche f
 ür Bunch-Kompression
 - Anforderung f
 ür FRANZ
- Möglichkeiten der Bunch-Kompression:
 - Grundidee
 - Rebuncher-Konzept: Energiedifferenz
 - Kombination: Energie- und Wegdifferenz
- Untersuchte Geometrien:
 - > 1-Dipol-System: ohne Gradienten (Mobley-Konzept)
 - > 2-Dipol-System: Rechteck-Magnete mit Gradienten
 - > 4-Dipol-System: Rechteck-Magnete 2 homogen und 2 mit Gradienten
 - > 4-Dipol-System: Sektor-Magnete 2 homogen und 2 mit Gradienten
- Kantenfokussierung
- Numerik

Numerik

Parallel zur Geometrie-Untersuchungen des Bunch-Kompressors wurden Strahldynamik-Rechnungen mit *TRACE3D*, *PARMILA* und *LORASR* durchgeführt.

Aufgrund der *Geometrie* und die *Strahleigenschaften* innerhalb des Bunch-Kompressors eignen sich die üblichen Transport-Programme zur LINAC-Entwicklung nicht für eine akkurate Beschreibung des Systems.

=> Für den Bunch-Kompressor zugeschnittenes Transport-Programm wird benötig.

FRANZ (<u>Frankfurt Neutron Source at the Stern-Gerlach-Zentrum</u>) Seminar "Aktuelle Probleme der Beschleuniger- und Plasmaphysik, 6. Juni 2008 NNP(<u>Non-N</u>eutral-<u>P</u>lasma)-Group (49/57)

Numerik: Einlesen der HI-Ausgangsverteilung von LORASR

FRANZ (<u>Frankfurt Neutron Source at the Stern-Gerlach-Zentrum</u>) Seminar "Aktuelle Probleme der Beschleuniger- und Plasmaphysik, 6. Juni 2008 NNP(<u>Non-Neutral-Plasma</u>)-Group (50/57)

FRANZ (Frankfurt Neutron Source at the Stern-Gerlach-Zentrum) Seminar "Aktuelle Probleme der Beschleuniger- und Plasmaphysik, 6. Juni 2008

FRANZ (<u>Frankfurt N</u>eutron Source at the Stern-Gerlach-<u>Z</u>entrum) Seminar "Aktuelle Probleme der Beschleuniger- und Plasmaphysik, 6. Juni 2008 NNP(<u>Non-Neutral-P</u>lasma)-Group (52/57)

mitbewegendes Koordinatensystem

Jede Ladung wird mit einen *Gewichtungsfaktor* auf jeden nächsten Gitterpunkt verteilt. Der Gewichtungsfaktor hängt vom *Abstand zum Gitterpunkt* ab.

Verteile Ladungsdichte mit der *"Cloud in Cell"-Methode* auf die Gitterpunkte.

Gitterlängen(Lx,Ly,Lz) werden durch RMS-Längen definiert, um Halo-Teilchen zu unterdrücken:

Lx= 10*x.rms Ly= 10*y.rms Lz= 10*z.rms x.max= 0.0129[m] y.max= 0.0105[m] z.max= 0.0221[m]

Bunch-Längen:

x.rms= 0.0062[m] y.rms= 0.0032[m] z.rms= 0.0033[m]

FRANZ (<u>Frankfurt Neutron Source at the Stern-Gerlach-Zentrum</u>) Seminar "Aktuelle Probleme der Beschleuniger- und Plasmaphysik, 6. Juni 2008

Numerik: "Poisson-Solver" durch Matrix-Methode

FRANZ (<u>Frankfurt N</u>eutron Source at the Stern-Gerlach-<u>Z</u>entrum) / Seminar "Aktuelle Probleme der Beschleuniger- und Plasmaphysik, 6. Juni 2008 NNP(\underline{N} on- \underline{N} eutral- \underline{P} lasma)-Group (54/57)

- Drift mit Raumladung.
- "Merging" von zwei Bunchen.
- Einlesen von externen Feldern.
- Transport durch Dipol-Feld mit Raumladung bei beliebiger Geometrie.

- Verschiedene *Möglichkeiten der Bunch-Kompression* wurden präsentiert
- Die Entwicklung vom *Mobley-Konzept* bis zur 4-Dipol-Geometrie wurde dargestellt.
- Das Prinzip der Kantenfokussierung wurde an Beispielen erläutert.
- Die Entwicklung eines Transport-Programms für den Bunch-Kompressor wurde gestartet.
- Vorläufige Ergebnisse des Poisson-Solver wurden präsentiert.

- Verschiedene *Möglichkeiten der Bunch-Kompression* wurden präsentiert
- Die Entwicklung vom *Mobley-Konzept* bis zur 4-Dipol-Geometrie wurde dargestellt.
- Das Prinzip der Kantenfokussierung wurde an Beispielen erläutert.
- Die Entwicklung eines Transport-Programms für den Bunch-Kompressor wurde gestartet.
- Vorläufige Ergebnisse des Poisson-Solver wurden präsentiert.

Vielen Dank für Ihre Aufmerksamkeit !

NNP(<u>Non-N</u>eutral-<u>P</u>lasma)-Group (57/57)

