Transport in Toroidal Magnetic field and Injection System

Ninad Joshi

Outline

- $\mathcal{C}^{\mathcal{A}}$ Motivation
- **Background and Numerical Codes** \mathbb{R}^3
- $\mathcal{L}_{\mathcal{A}}$ **Simulations**
- **Experiments** $\mathcal{L}_{\mathcal{A}}$
- **Injection System** $\mathcal{L}_{\mathcal{A}}$

Motivation

- \mathbb{R}^3 Storage ring with toroidal magnetic field configuration.
- $\mathcal{L}_{\mathcal{A}}$ Transport in toroidal segment.
- $\left\| \cdot \right\|$ Dynamics in Magnetic field with real configuration.
- $\mathcal{L}_{\mathcal{A}}$ Injection System

Magnetic Surface

- \mathbb{R}^3 Figure $8 \Rightarrow$ first stellarator
- \mathcal{L} Field line tracing => magnetic surface
- **Ring with segments** n

Motion in Magnetic fields

- $\mathcal{C}^{\mathcal{A}}$ Charged particles in magnetic field \Rightarrow Gyrating motion.
- $\mathcal{L}^{\mathcal{L}}$ When fields are varying the time step is important factor while simulations
- **COL** Curvature drift leads losses in vertical direction
- \mathbf{r} Crossed Electric-Magnetic drift independent of species
- $\mathcal{L}_{\mathcal{A}}$ Redistribution of momentum

A curved magnetic field.

Leads to experiments

- $\mathcal{L}_{\mathcal{A}}$ Early simulations showed curvature drift is dominant.
- 20kV Terminal
- $\mathcal{C}^{\mathcal{A}}$ Experiments with curved sector magnetic field 0.6T on axis.

Toroidal Segments

- T. R=1300mm, r=100mm => CF200
- m. 24 double layer pancake coils, 33 windings
- 30 degree curved segments (2)
- $\mathcal{C}^{\mathcal{A}}$ ~680mm axial length
- **COL** 0.6T max at current 480A
- **The segments are not shielded with C** material

- Toroidal Geometry => r,θ,ξ right handed system
- $\mathcal{L}_{\mathcal{A}}$ Poisson Equation with toroidal boundary
- **T** FDTD for equation of motion
- 10,00,000 particles can be simulated on CSC cluster **T**
- Grid Points 50*50*180

Definitions

- \mathbb{R}^2 **v** Velocity ratio = v_\perp/v_{\parallel}
- **Right handed co-ordinate system** $\mathcal{L}_{\mathcal{A}}$
- \mathbb{R}^2 $\bm{{\mathsf{v}}}_{_\text{\tiny{H}}}$ taken parallel to $\bm{\mathsf{B}}$
- **Low velocity ratio => smaller Larmour** \mathbb{R}^2 radius

Variation in B-field

35

40

 $I=480 \Rightarrow B=0.6T$

Variation with Energy

3d map at output plane

Mapping at input plane

 0.13
 0.17
 0.09
 0.08
 0.08
 0.07
 0.06

 $\begin{array}{c} 0.14 \\ 1.11 \\ 1.09 \\ 0.08 \\ 0.08 \\ 0.05 \\ 0.05 \end{array}$

 x (mm)

Space Charge

- Parallel beam 30mm into single toroid
- Due to space charge the $\mathcal{C}^{\mathcal{A}}$ vertical drift is lowered
- $\mathcal{C}^{\mathcal{A}}$ But also the "good beam" is smaller
- × The drift increases at ~80mA which is the brilluoin flow limit

Magnetic field variation

60 Red =2mA, Blue=20mA, \mathbb{R}^3 50 Green=60mA40 **There is distinct difference in** $\overline{}$ 30 behaviour at lower and highe 20 beam current

135

mm

Input

position

Beam

Toroid-1

Output

Plane

Experiments

- $\mathcal{L}_{\mathcal{A}}$ Beam extraction from ion source
- $\mathcal{C}^{\mathcal{A}}$ Transport through Solenoid
- **Transport through Toroidal Segment** $\mathcal{L}_{\mathcal{A}}$

Proton beam

- **Nolume type Ion sorce**, Triode \mathbb{R}^3 extraction
- At 10 keV Energy, Current 5.2mA $\mathcal{L}_{\mathcal{A}}$
- n. ~45% proton \sim 2.3mA
- $\mathcal{C}^{\mathcal{A}}$ $ε_{rms} = 0.131$ mm-mrad

Transport through Solenoid

- \mathbb{R}^n Focusing strength $k = (B/(2p/e))^2$. Beam distribution downstream of the solenoid was measured and compared with simulations.
- T. Further simulations were done takeing into account the fringing field of toroid segment to get input distribution for beam transport into toroidal segments and injection system

Transport through Toroidal **Segments**

Experimental Setup

First Experimental Results

- $\mathcal{L}_{\mathcal{A}}$ On left => simulated Beam ; Green is H⁺, Red is H₃⁺
- **Acceptance of Emittance scanner is not fulfilled due to which beam** $\mathcal{L}_{\mathcal{A}}$ is chopped off
- $\mathcal{L}_{\mathcal{A}}$ Simulation Result is visually comparable \Rightarrow " Proof of Simulations"

Injection System

- \mathbb{R}^3 Experiments with two toroidal segments
- $\mathcal{L}_{\mathcal{A}}$ Auxiliary coil for special magnetic field configuration
- $\mathcal{C}^{\mathcal{A}}$ Input parameters : Beam parameters magnetic field parameters, geometry
- T. Using measured transport parameters back calculation
- $\mathcal{L}_{\mathcal{A}}$ **Transmission**

Segment Geometry

- $\mathcal{L}_{\mathcal{A}}$ Input parameters : Beam parametes fixed. 10keV proton with measured trace space distribution after solenoid.
- \mathbb{R}^3 Velocity ratio for ring beam was simulated at middle plane of second segment.
- $\mathcal{O}(\mathcal{O}_\mathcal{O})$ Segment distance chosen to 300~340mm.
- **I** Angle between two segments => space for injection coil as well better in dynamics point of view. Angle between two segments can be 6 degree max. But technical point of view 0 degree since not two much effective

Configurations for injection coil

- \mathbb{R}^3 10keV proton beam injected parallel to find best position with respect to coil
- $\mathcal{L}^{\mathcal{L}}$ Coil itself can be moved up or down
- $\mathcal{C}^{\mathcal{A}}$ Aperture, length and number of winding parameters to play

Final Setup

- $\mathcal{C}^{\mathcal{A}}$ Inner radius 120mm
- $\mathcal{C}^{\mathcal{A}}$ Outer 316mm
- Length 240mm m.
- 40 coils, 6 layers \mathbb{R}^3
- B-field 0.33T at 400A $\overline{\mathcal{A}}$
- **Distance between two toroidal** $\mathcal{L}^{\mathcal{L}}$ segments 320mm
- Coil position 14cm above $\mathcal{L}_{\mathcal{A}}$ middle plane 12cm away from axis

Penetration depth for given coil

- \mathbb{R}^3 The position at which beam enters injection toroid depends on current in injection coil at constant toroidal field
- $\mathcal{L}_{\mathcal{A}}$ On avarage r=0.075 was chosen so that no scraching on wall
- $\mathcal{C}^{\mathcal{A}}$ compromise ring beam space and influence on it.

- $\mathcal{C}^{\mathcal{A}}$ Output distribution at the middle plane of toroid-2 is mapped on input
- $\mathcal{C}^{\mathcal{A}}$ 10keV proton beam with 30mm 30mrad injected
- **Blue region depicts the "good beam" parameters** ×

Two Beam paths

Space charge and energy variation

- $\mathcal{C}^{\mathcal{A}}$ These space charge results are glimpse
- **Absolute trasmission simulated 72.6%** n. for parallel beam

Concluding Remarks

- \mathbb{R}^3 Platform for investigation of beam transport in complete storage ring
- $\mathcal{L}_{\mathcal{A}}$ It give opportunity to compare the numerical simulation and predict for large scale machine
- **On experimental stage many activities are still to come** $\mathcal{C}^{\mathcal{A}}$
- $\mathcal{L}_{\mathcal{A}}$ Beam profile with inside segments using scintillators moving in longitudinal direction

Thank You ..!!

THE END

Kicker System

 \mathbb{R}^3 At a beam energy of 20keV and in a magnetic field of 0.6T a deflection of 30mm with an electric field of E=10kV/cm can be achieved within a plate length of 14cm

Two Beams in magnetic field

- $\mathcal{C}^{\mathcal{A}}$ Energy 100 keV proton
- $\mathcal{C}^{\mathcal{A}}$ 1000 time steps represents single turn in 8-figure with $R=1.3m$, $r=0.1m$
- \blacksquare Magnetic field B=1.0 T, N=0.81*n $_{\sf b}$ $\mathcal{C}^{\mathcal{A}}$

Blue : 0.93*n_b

Red : 0.85*n_b

Green : 0.71*n_b