Fast Beam Chopping for FRANZ

Christoph Wiesner

Contents

1. Introduction

- FRANZ
- Chopper Parameter
- LEBT (Layout, Chopper Position, Simulations)

2. Chopper System

- From Dipole towards new Concept
- Fast Kicker
 - Magnetic (Simulations, Technics/Experiment)
 - Electric (Simulations, Technics/Experiment)
 - Resume
- Septum Magnet
 - Traditional Septum
 - Massless Septum: C-Magnet-System
 - Simulations

3. Summary and Outlook

2008/03/04 JOHANN WOLFGANG

UNIVERSITÄT FRANKFURT AM MAIN

Frankfurt Neutron Source

- Septum
 - Traditional
 - Massless
 - Simulation

3. Outlook

Parameters Chopper

- Input: 150 mA dc proton beam, 120 keV
- Output: 50-100 ns bunches, repetition rate f = 250 kHz

- High Repetition Rate
- High Intensity
- Significant Fields
- Short Rise Times (100 ns)

C. Wiesner

UNIVERSITÄT FRANKFURT AM MAIN

- FRANZ
- Parameters
- LEBT
- 2. Chopper
- Concepts
- Kicker
 - Magnetic
 - Simu.
 - Tecn./ Exper.
 - Electric
 - Simu.
 - Tecn./
 - Exper.
 - Conclus.
- Septum
 - Traditional
 - Massless
 - Simulation
- 3. Outlook

2008/03/04 JOHANN WOLFGANG

UNIVERSITÄT FRANKFURT AM MAIN

GOETHE

Transport Simulations for 150 mA Proton Beam

1. Introduct.

- FRANZ
- Parameters
- LEBT
- 2. Chopper
- Concepts
- Kicker
 - Magnetic
 - Simu.
 - Tecn./ Exper.
 - Electric
 - Simu.
 - Tecn./
 - Exper.
 - Conclus.
- Septum
 - Traditional
 - Massless
 - Simulation

3. Outlook

Sektion	Funktion	von	bis	Länge	B-Feld	Max.Radius	Raumlad.kom
1	Drift	0	470	470	0	75	0.8
2	Solenoid 1	470	870	400	Hom0245	75	0.8
3	Drift (Diagnostik)	870	1570	700	0	75	0.8
4	Solenoid 2	1570	1820	250	Sol0100	50	0.8
5	Drift	1820	1920	100	0	50	0.8
6	Dipol (ohne Feld)	1920	2220	300	0	25	
7	Drift bis Blende	2220	2520	300	0	50	
8	Drift	2520	2620	100	0	75	
9	Solenoid 3	2620	2870	250	Sol0500	50	
10	Drift	2870	3070	200	0	75	
11	Solenoid 4	3070	3320	250	Sol0715	50	
12	Drift	3320	3620	300	0	50	

UNIVERSITÄT FRANKFURT AM MAIN

GOETHE

Trajectory - Magnetic Kicker

Test: Cu-Coil

JOHANN WOLFGANG **UNIVERSITÄT** FRANKFURT AM MAIN

GOETHE

1. Introduct.

- FRANZ
- Parameters
- LEBT
- 2. Chopper
- Concepts
- Kicker
 - Magnetic
 - Simu.
 - Tecn./ Exper.
 - Electric
 - Simu.
 - Tecn./ Exper.
 - Conclus.
- Septum
 - Traditional
 - Massless
 - Simulation
- 3. Outlook

Extrapolation to 58mT

I = 11.3 kA (exper.) resp. I = 7.0 kA (theor.)

Fast Beam Chopping for FRANZ

2008/03/04

JOHANN WOLFGANG GOETHE

Test Stand

- FRANZ
- Parameters
- LEBT
- 2. Chopper
- Concepts
- Kicker
 - Magnetic
 - Simu.
 - Tecn./ Exper.
 - Electric
 - Simu.
 - Tecn./
 - Exper.
 - Conclus.
- Septum
 - Traditional
 - Massless
 - Simulation
- 3. Outlook

JOHANN WOLFGANG

UNIVERSITÄT FRANKFURT AM MAIN

Simulation Electric Kicker (Video)

1. Introduct.

- FRANZ
- Parameters
- LEBT

2. Chopper

- Concepts
- Kicker
 - Magnetic
 - Simu.
 - Tecn./ Exper.
 - Electric
 - Simu.
 - Tecn./
 - Exper.
 - Conclus.
- Septum
 - Traditional
 - Massless
 - Simulation
- 3. Outlook

JOHANN WOLFGANG GOETHE UNIVERSITÄT FRANKFURT AM MAIN

Transformer Experiment

- FRANZ
- Parameters
- LEBT
- 2. Chopper
- Concepts
- Kicker
 - Magnetic
 - Simu.
 - Tecn./ Exper.
 - Electric
 - Simu.
 - Tecn./ Exper.
 - Conclus.
- Septum
 - Traditional
 - Massless
 - Simulation
- 3. Outlook

Kicker

- FRANZ
- Parameters
- LEBT
- 2. Chopper
- Concepts
- Kicker
 - Magnetic
 - Simu.
 - Tecn./ Exper.
 - Electric
 - Simu.
 - Tecn./
 - Exper.
 - Conclus.
- Septum
 - Traditional
 - Massless
 - Simulation
- 3. Outlook

	Electric	Magnetic
Beam Stiffness	$E\rho \approx 240kV$	$B\rho = 0.05 Tm$
Proportional to	mv²	mv
Gap Size	10 cm	6 cm
Length	20 cm	15 cm
Field, alpha=10°	E = 211 kV/m	B = 57.9 mT
Energy Density	0.2 J/m ³	1.3 kJ/m ³
Space Charge Compensation	0%	15-20% ?
Reliability	Sparking? Sputtering? Operation Time?	Power Consumption?

Fast Beam Chopping for FRANZ

2008/03/04

JOHANN WOLFGANG GOETHE UNIVERSITÄT FRANKFURT AM MAIN

Septum Magnet

1. Introduct.

- FRANZ
- Parameters
- LEBT

2. Chopper

- Concepts
- Kicker
 - Magnetic
 - Simu.
 - Tecn./ Exper.
 - Electric
 - Simu.
 - Tecn./
 - Exper.
 - Conclus.
- Septum
 - Traditional
 - Massless
 - Simulation
- 3. Outlook

Lambertson Type

Ostiguy et al., **A New Lambertson Magnet for the FNAL 400 MeV Linac,** FERMILAB-Conf-03/115 July 2003

UNIVERSITÄT FRANKFURT AM MAIN

GOETHE

JOHANN WOLFGANG

1. Introduct.

- FRANZ
- Parameters
- LEBT

2. Chopper

- Concepts
- Kicker
 - Magnetic
 - Simu.
 - Tecn./ Exper.
 - Electric
 - Simu.
 - Tecn./
 - Exper.
 - Conclus.
- Septum
 - Traditional
 - Massless
 - Simulation
- 3. Outlook

UNIVERSITÄT FRANKFURT AM MAIN

GOETHE

JOHANN WOLFGANG

Magnetic Induction

- FRANZ
- Parameters
- LEBT
- 2. Chopper
- Concepts
- Kicker
 - Magnetic
 - Simu.
 - Tecn./ Exper.
 - Electric
 - Simu.
 - Tecn./
 - Exper.
 - Conclus.
- Septum
 - Traditional
 - Massless
 - Simulation
- 3. Outlook

UNIVERSITÄT FRANKFURT AM MAIN

Summary

- Transport Simulations LEBT
- LEBT Installation under Progress
- Multi-Particle Simulations for Electric and Magnetic Kicker
- Development of Chopper Concept
- Preliminary Experiments for Electric and Magnetic Kicker
- New Concept of Massless Septum Magnet
- Optimization of Septum Magnet in Simulations with CST EM Studio

