

Bunch Compressor for Intense Proton Beams

L.P. Chau, M. Droba, O. Meusel, D. Noll, U. Ratzinger, C. Wiesner chau@iap.uni-frankfurt.de

DPG Spring Meeting, Bonn, Germany March 15-19, 2010

FRANZ: Requirement at the Target

Realistic particle distribution after the LINAC

Beam size $r_0 \approx 1 \text{cm}$

Average current over one RF-period: I = 150mA

Center energy of the Bunch: W = 2MeV

Velocity/speed of light : β = 0.065

Charge per micro bunch: Q_{bunch} = 0.85*nC*

Number of protons per Bunch: $N_{proton} = 5.3 \cdot 10^9$

Path length(1. traj.) : $L \approx 4m$

Electric field on the surface of the bunch: $E_0 = 76.4kV/m$

Acceleration (proton on surface): $a = 7.4 \cdot 10^{15} m/s^2$

Potential Energy (proton on surface): W_{pot}=763.9 *eV*

Max. velocity due to space charge forces: $v_{max} = 3.8 \cdot 10^5 m/s$

Significant Space charge forces!

=> max. Beam size after 4*m* drift: r₁ ≈ 5*cm*

Mobley Type Bunch Compressor

Transit time differences

Path length differences

Mobley-Buncher: (μA-Proton beams)

Kicker

→ Separation of the micro bunches

Bending system (1 Dipole)

- → "weak" focusing
- → path length differences
- → longitudinal compression

Mobley Type Bunch Compressor

Transit time differences

Path length differences

Mobley-Buncher: (μA-Proton beams)

Kicker

→ Separation of the micro bunches

Bending system (1 Dipole)

- → "weak" focusing
- → path length differences
- → longitudinal compression

Improvements for 150mA Proton beams:

2 main dipoles (Gradient)

→ more parameters for beam dynamics

2 auxiliary dipoles (homogeneous)

- → linear separation of the trajectories
- → momentum exchange in trans. plane

2 rebuncher cavities

→ longitudinal Beam dynamics

Bunch Compressor: Improvements for 150mA Proton beams

- Kicker: f = 5MHz, $U_{max} = 250kV$; $P \approx 15kW$
- Homogeneous dipoles: $B_1 = -515.0mT$
- Dipoles with gradient: $B_2 = 551.9 \pm 98.4mT$
- Multi-Aperture-Rebuncher: U_{eff}= 100-140kV, P≈15kW
- Broad-Gap-Rebuncher: U_{eff}= 120kV, P≈10kW

THX @ Y.Nie & H. Podlech

Bunch Compressor: Improvements for 150mA Proton beams

- Kicker: f = 5MHz, $U_{max} = 250kV$; $P \approx 15kW$
- Homogeneous dipoles: $B_1 = -515.0mT$
- Dipoles with gradient: $B_2 = 551.9 \pm 98.4 mT$
- Multi-Aperture-Rebuncher: U_{eff}= 100-140kV, P≈15kW
- Broad-Gap-Rebuncher: U_{eff}= 120kV, P≈10kW

Bunch Compressor: Improvements for 150mA Proton beams

- Kicker: f = 5MHz, $U_{max} = 250kV$; $P \approx 15kW$
- Homogeneous dipoles: $B_1 = -515.0mT$
- Dipoles with gradient: $B_2 = 551.9 \pm 98.4mT$
- Multi-Aperture-Rebuncher: U_{eff}= 100-140kV, P≈15kW
- Broad-Gap-Rebuncher: U_{eff}= 120kV, P≈10kW

Bunch Compressor: Envelopes(95%) – bunch(1)

Bunch Compressor: projections at the target

Single Bunch Beam Dynamics:

$$\checkmark \bullet \Delta T = 50-100 ns => \Delta T \approx 1 ns$$

Bunch Compressor: Merging Scenario

- Bunch-bunch-interaction in front of the target
- Particle in Cell : full space charge forces

L =
$$35cm$$

I = $9x150mA$
 $N_{particle} \approx 90k$

 $N_{grid} = 100x100x100$

 $\Delta x_{\text{stepsize}} = 1mm$ $\Delta t_{\text{calc+plot}} \approx 50s$

<transp.:merge>:

- Particle in Cell (PIC)
- dynamic lattice
- finite differences
- Poisson solver

Bunch Compressor: Merging - Projections at the target

Requirements: $(\Delta W/W)_{rms} < \pm 5\%$

 $\Delta T_{rms} < 1ns \checkmark$

 $A < 3x3cm^2 \checkmark$

Bunch Compressor: Conclusion & Outlook

- Improvement of the Mobley bunch compressor for high current applications: Several μA beam current => 150mA per micro bunch
- Additional dipoles => transverse beam dynamics
- Rebuncher cavities => longitudinal beam dynamics
- Single **Bunch beam dynamics** + merging scenario => fulfills the requirements
- first step for technical realization of the bunch Compressor
- Kicker: design studies + numerical studies + measurements at scaled model
 - => Results in good agreement with analytical and numerical estimations
- **Dipoles:** numerical studies with CST:EMS
 - => Realistic field distributions <=> beam dynamics
 - => Technical realization of the hardwares
- Cavities: feasible design with CST:MWS
 - => optimization of the power consumptions

Thank you for your attention.

on behalf of:

M. Droba, O. Meusel, D. Noll, U. Ratzinger, C. Wiesner

IAP, Goethe University Frankfurt

acknowledgment:

Y. Nie, H. Podlech, A. Schempp, S. Schmidt

IAP, Goethe University Frankfurt

LINAC-AG http://linac.physik.uni-frankfurt.de

AG-Schempp http://iaprfq.physik.uni-frankfurt.de

NNP-AG http://nnp.physik.uni-frankfurt.de

DFG http://www.dfg.de

HIC for FAIR http://hicforfair.de

Bunch Compressor: geometrical parameters

Mobley Type Bunch Compressor

- Kicker: f = 5MHz, $U_{max} = 250kV$; $P \approx 15kW$
- Homogeneous dipoles: $B_1 = -515.0mT$
- Dipoles with gradient: $B_2 = 551.9 \pm 98.4 mT$
- Multi-Aperture-Rebuncher: U_{eff}= 100-140kV, P≈15kW
- Broad-Gap-Rebuncher: U_{eff}= 120kV, P≈10kW

Dipole(1)	
B ₁ /[mT]	515
g/[mm]	60
N·I/[A]	10420
$A_{coil}/[mm^2]$	50×150
A _{wind} /[mm ²]	7×7
N	153
I/[A]	68

Dipole(2)	
B ₂ /[mT]	650
g/[mm]	60
N·I/[A]	60476
$A_{coil}/[mm^2]$	100×200
A _{wind} /[mm²]	7×7
N	408
I/[A]	148

Bunch Compressor: Bunch(1) at the target

Bunch Compressor: Bunch(5) at the target

Bunch Compressor: Bunch(9) at the target

Beam dynamics with realistic field distribution

- Center motion significantly changed by large fringing field.
- paraxial approach over estimate the emittance growth in transverse plane.
- bigger emittance growth in long. plane with realistic fields.
- field enhancement nearby the edges due to saturation

 Insufficiently described by first order matrix formalism.

Measurements at scaled Model

		Analytical	MWS	Measured (Powermeter)
Effective Inductance	μН	12.9	12.3	12.5
Effective Capacitance	pF	23.8	31.1	28.8
Frequency	MHz	9.09	8.26	8.37
Intrinsic Quality Factor		2986	3058	1772
Shunt impedance	$M\Omega$	4.4	3.9	2.8

- Good agreement for the Inductance
- Stray Capacitance underestimated => higher frequency
- \sim 60% of the calculated intrinsic quality factor can be reached
- Measurements with network analyzer give comparable results
- Analytic formulas are good enough for "first shot" estimations
- big loops (~ 120×62mm²) are needed for critical coupling
 - => mechanical problems + RF-properties of the loop
- alternative coupling methods (capacitive, galvanic) have to be investigated

Bunch Compressor: field along the first trajectory at preliminary dipole design

- large fringing field
- Connected fringing field region

=> Effects of fringing fields on beam dynamics?

field enhancement at the edges due to saturation effects

Beam dynamics with realistic field distribution

$$x' = x'_{0} + k_{x}(\phi, \rho_{0}) \cdot x_{0}$$

$$y' = y'_{0} + k_{y}(\phi, \frac{g}{\rho_{0}}, K) \cdot y_{0}$$

$$\Delta y' = x'_{0} + k_{y}(\phi, \frac{g}{\rho_{0}}, K) \cdot y_{0}$$

Comparison with realistic field distribution:

0mA: real field dist. vs. matrix

150mA: real field dist. vs. matrix

real field dist.: 0mA vs. 150mA

Parameters of the first dipole:

Fringing field Integral K 1.034 Edge angle = -25.01 ϕ_{entrance} [deg] Edge angle ϕ_{exit} 29.31 [deg] Magnetic field B_0 515.0 [mT] 60.0 [mm] Gap