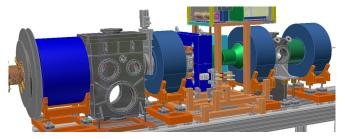
Secondary electron effects in low energy ion beams

Daniel Noll

Institute for Applied Physics Goethe University Frankfurt am Main

Friday, 22. February 2013 XLIV. Arbeitstreffen "Kernphysik" in Schleching 2013



- Introduction to low energy beam transport
- 2 Measurements of secondary electron effects
- 3 Simulation method
- ④ Simulation of a beam drift with repeller electrode
- 5 Conclusion

Introduction to low energy beam transport

- Matches the beam from the ion source into the first accelerator
- Prepares beam for injection into first accelerator (strong focussing required)
- Separation of unwanted beam fractions
- Can imprint time structure on the beam

Introduction to low energy beam transport Design choices

Challenges for high intensity beams:

- Combat space charge forces
- Avoiding high beam losses and emittance increase

Introduction to low energy beam transport Design choices

Challenges for high intensity beams:

- Combat space charge forces
- Avoiding high beam losses and emittance increase

Electrostatic LEBT

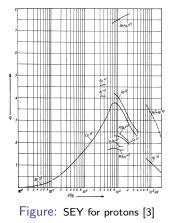
- Use of electrostatic lenses for focussing
- Limited by high voltage discharges
- Full space charge force

Introduction to low energy beam transport Design choices

Challenges for high intensity beams:

- Combat space charge forces
- Avoiding high beam losses and emittance increase

Electrostatic LEBT


- Use of electrostatic lenses for focussing
- Limited by high voltage discharges
- Full space charge force

LEBT using solenoids

- Radial symmetric focussing
- Secondary electrons can accumulate in the beam potential – compensation of space charge

Conclusion

Introduction to low energy beam transport Sources of secondary electrons: impact of lost particles

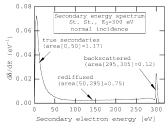


Figure: SEY for electrons [4]

- Depends on surface treatment
- Data for electrons available, for ions hard to find

Introduction to low energy beam transport

Sources of secondary electrons: ionisation of residual gas

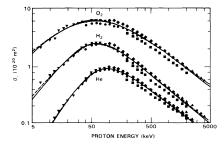


Figure: Electron production cross section for protons on different residual gas ions [5]

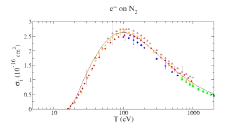


Figure: Electron impact ionisation cross section for $N_2[6]$

Maximum on N₂: σ_{ρ} (50keV) = 5.96 Å², σ_{e} (100eV) = 2.62 Å²

Measured secondary electron effects Beam potential

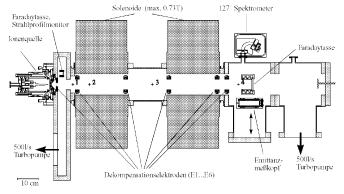
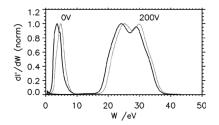



Figure: Setup used by P. Groß to measure space charge compensation [7]

Measured secondary electron effects Beam potential

Energy distribution of residual gas ions

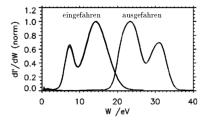
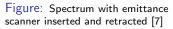
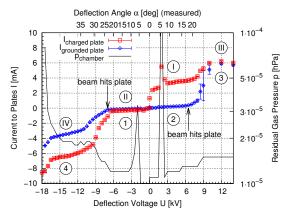




Figure: Spectrum between the solenoids with partially compensated and decompensated beam [7]

Measured secondary electron effects Beam deflection

"-" 0 V

Figure: Measurements on a deflected ${\rm He^+}$ beam at the HTL beam line[1]

"+" 0 V

Measured secondary electron effects

Longitudinal variation of the beam potential

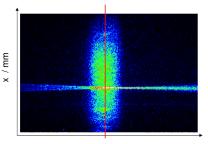
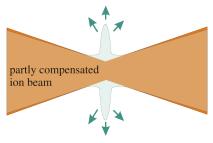
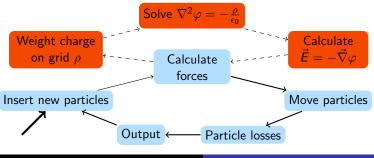



Figure: Spektrum of a focussed ion beam. Photo taken through borsilicate vacuum window [2]

loss channel for compensation electrons

Figure: Possible explanation: electrons are attracted by the high beam potential in the focus and can escape radially [2]

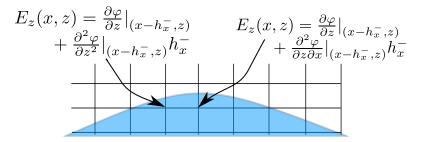

Measured secondary electron effects A lot of open questions...

- On what does the degree of compensation depend?
- What is the distribution of the generated secondary electrons in the beam potential?
- Influence on the distribution of the beam particles?
- Is there an equilibrium state? Does thermalization take place?
- What are the build-up times?
- How does all of this depend on the production mechanism?
- Are there regions where one of the mechanisms dominates?
- Are there states which behave collectively?

The particle-in-cell method

Valid approximations for low-energy beams:

- Non-relativistic: $\beta < 0.1, \gamma \approx 1$
- Electrostatic: self-magnetic field $B_{Beam} \approx B_{Earth}$
- Grouping of particles to macroparticles "phase space sampling"



Daniel Noll Secondary electron effects in low energy ion beams

The particle-in-cell method Approximation of geometry on the grid

Finite difference discretization of the second derivatives with different stencil distances h_+ , h_- :

$$\frac{\mathrm{d}^{2}\varphi}{\mathrm{d}x^{2}}\left(x\right) = \frac{2}{h_{-}h}\varphi\left(x-h_{-}\right) + \frac{2}{h_{+}h}\varphi\left(x+h_{+}\right) - \varphi\left(x\right) + \mathcal{O}\left(h^{2}\right)$$

Simulation difficulties

Limits on time step:

- $\frac{\Delta p}{p} \ll 1 \longrightarrow \Delta t \ll \frac{\sqrt{2mW_{beam}}}{q|\vec{E}|}$, i.e. $\approx 480 \,\mathrm{ps}$ for $10 \mathrm{eV} \,\mathrm{e^-}$ in 200 mA, 120 keV proton beam
- Cyclotron frequency: $\omega = \frac{qB}{m}$, stable numeric integration (velocity verlet algorithm) requires $\Delta t < \frac{2}{\omega}$, i.e. $\approx 23 \text{ ps}$ in B = 500 mT

Simulation difficulties

Limits on time step:

- $\frac{\Delta p}{p} \ll 1 \longrightarrow \Delta t \ll \frac{\sqrt{2mW_{beam}}}{q|\vec{E}|}$, i.e. $\approx 480 \,\mathrm{ps}$ for $10 \mathrm{eV} \,\mathrm{e^-}$ in 200 mA, 120 keV proton beam
- Cyclotron frequency: $\omega = \frac{qB}{m}$, stable numeric integration (velocity verlet algorithm) requires $\Delta t < \frac{2}{\omega}$, i.e. $\approx 23 \text{ ps}$ in B = 500 mT

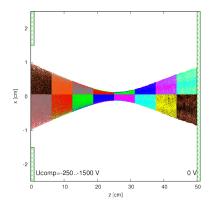
Electron production on walls

- η > 1 in relevant energy range: high number of particles
- Limited data on secondary emission yield available

Simulation difficulties

Limits on time step:

- $\frac{\Delta p}{p} \ll 1 \longrightarrow \Delta t \ll \frac{\sqrt{2mW_{beam}}}{q|\vec{E}|}$, i.e. $\approx 480 \,\mathrm{ps}$ for $10 \mathrm{eV} \,\mathrm{e^-}$ in 200 mA, 120 keV proton beam
- Cyclotron frequency: $\omega = \frac{qB}{m}$, stable numeric integration (velocity verlet algorithm) requires $\Delta t < \frac{2}{\omega}$, i.e. $\approx 23 \,\mathrm{ps}$ in $B = 500 \,\mathrm{mT}$


Electron production on walls

- η > 1 in relevant energy range: high number of particles
- Limited data on secondary emission yield available

lonisation of residual gas

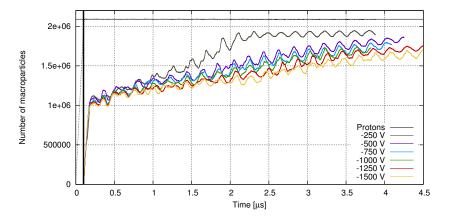
- Mean time between collisions (p = 10⁻⁷ mbar, W_b = 50 keV): 2.2 s
- Influence on residual gas pressure?

Simulation of a beam drift with repeller electrode

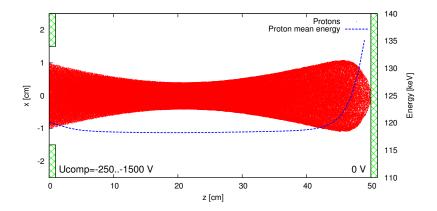
$$\Delta T = 50 \, \mathrm{ps}, \ T = 5 \, \mu \mathrm{s}.$$

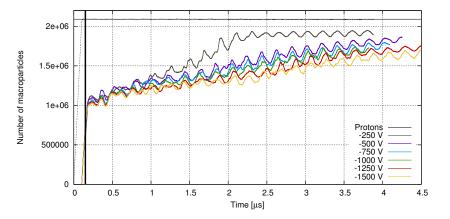

One electron per proton $W_e^{start} = 1 \, \mathrm{eV}$

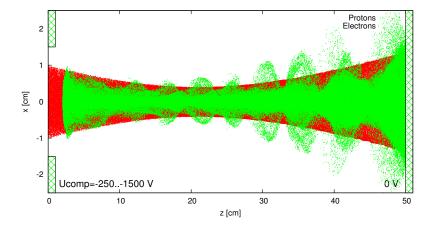
$$\begin{split} I_b &= 100 \, \mathrm{mA} \\ W_b &= 120 \, \mathrm{keV} \\ \varphi_b^{max} &= 1090 \, V \\ U_{comp} &= -250 \dots - 1500 \, V \end{split}$$

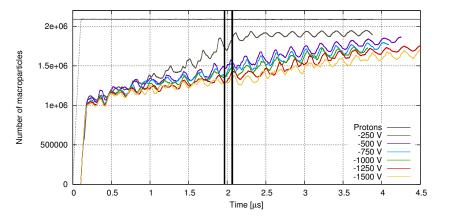

32 CPUs on CSC "Fuchs" Lattice $80 \times 80 \times 400$, h = 1.25 mm1.9 million dofs 1000 new particles per step, 3.7 million in flight

Simulation of a beam drift with


Rise times for different voltages

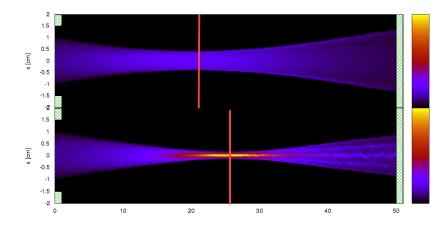

Simulation of a beam drift with repeller electrode Rise times for different voltages


Simulation of a beam drift with repeller electrode Proton beam at start


Simulation of a beam drift with compensation lens Rise times for different voltages


Simulation of a beam drift with repeller electrode Proton hitting the wall

Simulation of a beam drift with repeller electrode Rise times for different voltages



Electron column oscillation

Daniel Noll Secondary electron effects in low energy ion beams

Influence on the proton beam

Conclusion and outlook

- Secondary electrons have an effect on beam dynamics in the low energy section of an accelerator
- The Particle-in-cell method can be used to study these effects
- Systematic studies of the dependance of the equilibrium state and the rise time on the production rates
- Space charge compensation in beam line components
- Realistic models for electron production
 - Measurement of the SEY for different materials for different beam energies at the HTL test stand inclusion in the PIC code
 - Include model from Furman and Pivi [4] for electron \leftrightarrow wall interaction
 - Interaction between electrons, ions \leftrightarrow residual gas dynamics of the residual gas?
- Simulation of real systems and comparison with measurements
 - FRANZ LEBT and $E \times B$ chopper compensation of a pulsed proton beam
 - Gabor lenses focussing using a confined electron plasma

Thank you for your attention!

Hannes Dinter - Experimente mit einem schnellen Choppersystem f
ür intensive lonenstrahlen Bachelorarheit 2010 - Goethe Universit
ät Frankfurt

Bachelorarbeit 2010 - Goethe Universität Frankfu

- Oliver Meusel Private Communication
- M. von Ardenne Tabellen zu Angewandten Physik Band 1 VEB Deutscher Verlag der Wissenschaften 1973
- M.A. Furman and M.T.F. Pivi Probabilistic model for the simulation of secondary electron emission Physical Review Special Topics - Accelerators and beams, Volume 5 (2002)
- M. Rudd, R.D. DuBois, L.H. Toburen, C.A. Ratcliffe and T.V. Goffe Cross Sections for Ionizaton of Gases by 5-4000-keV Protons and for Electron Capture by 5-150-keV Protons
 Physical Review A Volume 28, Number 6, December 1983
- Electron-Impact Cross Sections for Ionization and Excitation Database http://physics.nist.gov/PhysRefData/Ionization/Xsection.html

 P. Groß - Untersuchungen zum Emittanzwachstum intensiver Ionenstrahlen bei teilweise Kompensation der Raumladung
 Dissertation 2000 - Goethe Universität Frankfurt