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Introduction to low energy beam transport

Matches the beam from the ion source into the first
accelerator

Prepares beam for injection into first accelerator (strong
focussing required)

Separation of unwanted beam fractions

Can imprint time structure on the beam
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Introduction to low energy beam transport
Design choices

Challenges for high intensity beams:

Combat space charge forces

Avoiding high beam losses and emittance increase

Electrostatic LEBT

Use of electrostatic lenses
for focussing

Limited by high voltage
discharges

Full space charge force

LEBT using solenoids

Radial symmetric focussing

Secondary electrons can
accumulate in the beam
potential – compensation
of space charge
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Introduction to low energy beam transport
Sources of secondary electrons: impact of lost particles

Figure: SEY for protons [3]

Figure: SEY for electrons [4]

Depends on surface treatment

Data for electrons available, for
ions hard to find
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Introduction to low energy beam transport
Sources of secondary electrons: ionisation of residual gas

Figure: Electron production cross section
for protons on different residual gas ions [5]

Figure: Electron impact ionisation cross
section for N2[6]

Maximum on N2: σp (50keV) = 5.96 Å2, σe (100eV) = 2.62 Å2
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Measured secondary electron effects
Beam potential

Figure: Setup used by P. Groß to measure space charge compensation [7]
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Measured secondary electron effects
Beam potential

Energy distribution of residual gas ions

Figure: Spectrum between the
solenoids with partially compensated and
decompensated beam [7]

Figure: Spectrum with emittance
scanner inserted and retracted [7]
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Measured secondary electron effects
Beam deflection
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Measured secondary electron effects
Longitudinal variation of the beam potential

Figure: Spektrum of a focussed ion
beam. Photo taken through borsilicate
vacuum window [2] Figure: Possible explanation: electrons

are attracted by the high beam potential
in the focus and can escape radially [2]
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Measured secondary electron effects
A lot of open questions...

On what does the degree of compensation depend?

What is the distribution of the generated secondary electrons
in the beam potential?

Influence on the distribution of the beam particles?

Is there an equilibrium state? Does thermalization take place?

What are the build-up times?

How does all of this depend on the production mechanism?

Are there regions where one of the mechanisms dominates?

Are there states which behave collectively?
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The particle-in-cell method

Valid approximations for low-energy beams:

Non-relativistic: β < 0.1, γ ≈ 1

Electrostatic: self-magnetic field BBeam ≈ BEarth

Grouping of particles to macroparticles – “phase space
sampling”

Insert new particles

Calculate
forces

Weight charge
on grid ρ

Solve ∇2ϕ = − ρ
ε0

Calculate
~E = −~∇ϕ

Move particles

Particle lossesOutput
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The particle-in-cell method
Approximation of geometry on the grid

Finite difference discretization of the second derivatives with
different stencil distances h+, h−:

d2ϕ

dx2
(x) =

2

h−h
ϕ (x − h−) +

2

h+h
ϕ (x + h+)− ϕ (x) +O

(
h2
)

file:///Users/danielnoll/Desktop/Schleching/Schleching/interpolation_...
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Simulation difficulties

Limits on time step:
∆p
p � 1 −→ ∆t �

√
2mWbeam

q|~E |
, i.e. ≈ 480 ps for 10eV e− in

200mA, 120 keV proton beam

Cyclotron frequency: ω = qB
m , stable numeric integration

(velocity verlet algorithm) requires ∆t < 2
ω , i.e. ≈ 23ps in

B = 500mT

Electron production on walls

η > 1 in relevant energy
range: high number of
particles

Limited data on secondary
emission yield available

Ionisation of residual gas

Mean time between
collisions (p = 10−7 mbar,
Wb = 50 keV): 2.2 s

Influence on residual gas
pressure?
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Simulation of a beam drift with repeller electrode

∆T = 50ps, T = 5µs.

One electron per proton
W start

e = 1 eV

Ib = 100mA
Wb = 120 keV
ϕmax
b = 1090V

Ucomp = −250 . . .− 1500V

32 CPUs on CSC “Fuchs”
Lattice 80× 80× 400,
h = 1.25mm

1.9 million dofs
1000 new particles per step,

3.7 million in flight

Daniel Noll Secondary electron effects in low energy ion beams



Introduction to low energy beam transport
Measurements of secondary electron effects

Simulation method
Simulation of a beam drift with repeller electrode

Conclusion

Simulation of a beam drift with
Rise times for different voltages
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Simulation of a beam drift with repeller electrode
Rise times for different voltages
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Simulation of a beam drift with repeller electrode
Proton beam at start
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Simulation of a beam drift with compensation lens
Rise times for different voltages
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Simulation of a beam drift with repeller electrode
Proton hitting the wall
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Simulation of a beam drift with repeller electrode
Rise times for different voltages
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Electron column oscillation
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Influence on the proton beam
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Conclusion and outlook

Secondary electrons have an effect on beam dynamics in the low
energy section of an accelerator
The Particle-in-cell method can be used to study these effects

Systematic studies of the dependance of the equilibrium state and the
rise time on the production rates
Space charge compensation in beam line components
Realistic models for electron production

Measurement of the SEY for different materials for different beam
energies at the HTL test stand – inclusion in the PIC code
Include model from Furman and Pivi [4] for electron ↔ wall interaction
Interaction between electrons, ions ↔ residual gas – dynamics of the
residual gas?

Simulation of real systems and comparison with measurements

FRANZ LEBT and E×B chopper – compensation of a pulsed proton
beam
Gabor lenses – focussing using a confined electron plasma
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Thank you for your attention!
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