Joschka F. Wagner

St. Michael, Austria - HIC for FAIR Workshop IAP Goethe Universität Frankfurt AG Ratzinger - NNP

28.02.2014

Outline

2 Experiments

- Setup
- Momentum-Filter
- Beam Diagnosis
- 3 Theory & Simulations
 - Closed Orbit Studies
 - Field Imperfections & Error Studies
 - Injection via Adiabatic Compression

4 Outlook

- Motivation

Superconducting High Current Ion Storage Ring F8SR

- Motivation

Why to build a new and such crooked Storage Ring - Motivation:

- \blacksquare Fusion reactivity studies in a High Current Mode such as p + $^{11}{\rm B} \rightarrow$ 3 $^{4}{\rm He}$ + 8.7 MeV
- multiple beam & particlespecies experiments in *Collider Mode* down to center of mass collision energies of 100 eV
- space charge compensation by magnetic surface bounded secondary electrons
- multi ionisation of light atoms by an intense proton beam
- beam plasma interaction
- coulomb screening effects

- Experiments

Setup

F8SR Experiments - Setup

Two 30 $^\circ$ Toroids, $B_{\rm max}=0.6\,{\rm T}$ Two refurbished injectors, each with:

- terminal, $U_{max} = 20 \, \mathrm{kV}$
- volume source, $I \approx 3.4 \,\mathrm{mA}$ hydrogen mix, max 50% protons
- faraday-cup + solenoid, $B_{max} = 0.72 \,\mathrm{T}$

Experiments

Momentum-Filter

Momentum-Filter

- Experiments

Momentum-Filter

F8SR Experiments - Momentum-Filter

Master Thesis - Heiko Niebuhr:

 Design and construction of a magnetic Momentum-Filter for different hydrogen species (H⁺,H⁺₂,H⁺₃)

Experiments

Momentum-Filter

F8SR Experiments - Momentum Filter

Simulations of hydrogen species H^+ , H_2^+ , H_3^+ with LINTRA

Measurements: beam current in Faraday-Cups FDT1: in front of solenoid FDT2: behind filter-aperture

filterchannel: grounded via ampèremeter, $I \sim losses$

3,6 3,2 2.8 2,4 -E_{Strahl} = 7,8 keV Strahlstrom I [mA] I_{Strahl / B=0} = 3,362 mA 2,0 -U_{Repeller} = - 500 V 1,6 - FDT1 1.2 - Filterkanal 0.8 — FDT2 0,4 -0.4 -0,05 0.35 Magnetfeld B [T]

Experiments

Momentum-Filter

F8SR Experiments - Injection

Injection simulations to determine air-core-coil parameters done (sim.-code *segments*). B = 0.2 - 0.3 TCoil-design and construction is upcoming.

Experiments

└─Beam Diagnosis

Beam Diagnosis

- Experiments

Beam Diagnosis

F8SR Experiments - Diagnosis

Master-Thesis Adem Ates: Non invasiv beam diagnosis via residual gas monitor in high magnetic fields

movable ring of azimutal photodiodes for visible light

Experiments

Beam Diagnosis

F8SR Experiments - Diagnosis

construction of a rapid recording electronics is done

- 20bit , 256 channels, direct current input & Analog-to-digital converter
- available capacitors: 3pF; 12,5pF; 25pF; 37,5pF ; up to 150pC
- integration times: 160 $\mu s 1 s$
- input currents: $fAs \mu As$
- continous measurement via two way input channel

DDC264EVM

- Experiments

Beam Diagnosis

F8SR Experiments - Diagnosis

Testing setup:

- extraction voltage: 6.5 kV
- beam current: 1 mA
- solenoid field: 0.33 T
- \blacksquare residual gas pressure: 10^{-5} mbar nitrogen

- Experiments

Beam Diagnosis

F8SR Experiments - Diagnosis

- measurement of a He-beam
- comparision with an invasive phosphor screen

setting up a full diagnosis software with a algorithmical back transformation beam monitoring is the next step

└─ Theory & Simulations

Theory & Simulations

Theory & Simulations

└─ Theory & Simulations

Closed Orbit Studies

Closed Orbit Studies

Traditional Rings, focussing & corrections \rightarrow Dipole, Quadrupoles

└─ Theory & Simulations

Closed Orbit Studies

Complex magnetic field geometry inhibits traditional transport description via matrices & fixpoints

→ find analogous description to interlink In magnetic coordinates (Boozercoordinates) ψ, θ, ξ → canonical variables for Drift-Hamiltonian:

$$\begin{aligned} \theta, \ P_{\theta} &= \frac{q\psi}{2\pi} \\ \xi, \ P_{\xi} &= \frac{\mu_0 G}{2\pi |B|} m v_{\parallel} - t \frac{q\psi}{2\pi} \\ H &= \frac{1}{2m} \frac{(P_{\xi} + t P_{\theta})^2 (2\pi)^2 |B|^2}{\mu_0^2 G^2 m^2} + \mu |B| + q\phi \end{aligned}$$

└─ Theory & Simulations

Closed Orbit Studies

For stable orbits the canonical variables must obey;

$$\begin{aligned} \frac{\mathrm{d}P_{\theta}}{\mathrm{d}t} \stackrel{!}{=} 0\\ \frac{\mathrm{d}\theta}{\mathrm{d}t} \stackrel{!}{=} 0\\ \frac{\mathrm{d}\theta}{\mathrm{d}t} = -\left[q\frac{\partial\phi}{\partial\theta} + \left(\mu + \frac{m\mathsf{v}_{\parallel}^{2}}{|\vec{B}|}\right)\frac{\partial|\vec{B}|}{\partial\theta}\right]\\ \frac{\mathrm{d}\theta}{\mathrm{d}t} = \frac{2\pi}{q}\left[q\frac{\partial\phi}{\partial\psi} + \left(\mu + \frac{m\mathsf{v}_{\parallel}^{2}}{|\vec{B}|}\right)\frac{\partial|\vec{B}|}{\partial\psi}\right] + t\frac{\mathrm{d}\xi}{\mathrm{d}t}\end{aligned}$$

- fixpoint studies with multipole expansion within the fieldmap are ongoing
- conventional 2d multipole expansion investigations do not satisfy the complex field geometry

└─ Theory & Simulations

└─ Closed Orbit Studies

└─ Theory & Simulations

└─Field Imperfections & Error Studies

└─ Theory & Simulations

Field Imperfections & Error Studies

Construction always has coil missalignment \rightarrow interfering multipole fields

└─ Theory & Simulations

Field Imperfections & Error Studies

Since \vec{B} has components: $B_{\psi} = 0$, B_{ξ} , B_{θ} Superposing a **poloidal** (B_{θ}) and **multipole** field. What do we get?

└─ Theory & Simulations

Field Imperfections & Error Studies

$$ec{B} = ec{B}_{ heta} + ec{B}_{ ext{quad}}$$

$$\vec{B}_{\theta} = \hat{B}_{\theta} \left(\begin{array}{c} -\sin\theta \\ \cos\theta \end{array} \right) \vec{B}_{quad} = \frac{\hat{B}_{q}r}{a} \left(\begin{array}{c} \sin\theta \\ \cos\theta \end{array} \right)$$

One obtains points with $|B| = 0 \rightarrow$ analytically solvable:

superposed **quadrupole**:

$$\left\{\theta = \frac{\pi}{2}, \quad r = \frac{\hat{B}_{\theta}}{\hat{B}_{q}}a\right\}; \left\{\theta = \frac{3\pi}{2}, \quad r = \frac{\hat{B}_{\theta}}{\hat{B}_{q}}a\right\}$$

superposed sextupole:

$$\left\{\theta = \frac{\pi}{3} , \quad r = \sqrt{\frac{\hat{B}_{\theta}}{\hat{B}_{q}}}a\right\}; \left\{\theta = \pi , \quad r = \sqrt{\frac{\hat{B}_{\theta}}{\hat{B}_{q}}}a\right\}; \left\{\theta = \frac{5\pi}{3} , \quad r = \sqrt{\frac{\hat{B}_{\theta}}{\hat{B}_{q}}}a\right\}$$

└─ Theory & Simulations

Field Imperfections & Error Studies

poloidal + quadrupole \rightarrow Quadrupoles around |B| = 0Poloidal around center area

poloidal + sextupole

Influence on particle transport?

- Theory & Simulations

L Theory & Simulations

└─ Theory & Simulations

- \rightarrow certain aperture at a specific slice
- \rightarrow dynamic aperture along the ring axis
- Acceptance of the confinement area is reduced
- \rightarrow areas of particle loss

└─ Theory & Simulations

LInjection via Adiabatic Compression

Injection via Adiabatic Compression

└─ Theory & Simulations

Injection via Adiabatic Compression

Injection via Adiabatic Compression

Concerning the canonical momentum $\vec{p} = m\vec{v} + q\vec{A}$ even if $\vec{v} \parallel \vec{B}$ at injection point one obtain $\Delta \vec{A} \rightarrow \Delta \vec{v}$ during entering \rightarrow radius of acceptance $r = \frac{2mv_{\parallel}}{qB}$ $r|_{B=6T} = 8 \,\mathrm{mm}$

└─ Theory & Simulations

Linjection via Adiabatic Compression

Injection via Adiabatic Compression

the facing problem is a smooth field transition

magnetic moment $\mu=\frac{mv_{\perp}^2}{2B}$ must be constant \rightarrow adiabatic invariant

└─ Theory & Simulations

LInjection via Adiabatic Compression

Injection via Adiabatic Compression

due to the gradient $rac{\Delta B}{\Delta s}
ightarrow B(x,y,z)
ightarrow B(\xi)$

└─ Theory & Simulations

Injection via Adiabatic Compression

Injection via Adiabatic Compression

hyperbolic spiral transport channel

└─ Theory & Simulations

Injection via Adiabatic Compression

Injection via Adiabatic Compression

Single particle simulations, $\vec{v} = \vec{v}_x + \vec{v}_{\parallel}$

└─ Theory & Simulations

LInjection via Adiabatic Compression

Injection via Adiabatic Compression

└─ Theory & Simulations

Linjection via Adiabatic Compression

Injection via Adiabatic Compression

Another possible solution to compensate the drift is by adding a dipole component

 $\begin{aligned} x(\theta) &= R.\cos(\theta) \\ y(\theta) &= R.\sin(\theta) \\ z(\theta) &= \frac{h\theta}{2\pi} + \frac{R}{\tan\alpha} \sin(n\theta + \varphi_0) \end{aligned}$

[S.Sheehy,BeamDynamicsMeetsMagnets 2013]

 \rightarrow to be investigated

Outlook

- commissioning of the injection experiment when the coil is ready
- design of the adiabatic injection section for the latest F8SR type
- high current beam transport simulations
- target fusion cross section simulations

Thank you for listening!

Fixpoints & Multipole expansion

Choose a certain point as a possible fixpoint \rightarrow interpolate the field at points on concentric circles $\vec{B}_{\text{res}} = \vec{B}_{\perp} - \vec{B}_{\perp,0}$ where $\vec{B}_{\perp} = B^{\theta} \vec{e}_{\theta}$ \rightarrow start multipole expansion

$$C_n = \frac{1}{Mr_0^{n-1}} \sum_{m=1}^{M} (B_y + iB_x)_m e^{-i\phi_m(n-1)}$$

where dipole quadrupole sextupole ...
$$n = 1 \qquad 2 \qquad 3 \qquad \dots$$

For a poloidal field $\vec{B} = B \begin{pmatrix} -\sin \theta \\ \cos \theta \end{pmatrix}$ one gets $C_n = 0 \quad \forall n$

Outlook

Slice of the mesh ("beam tube") black= \vec{B}_{θ} component blue: \vec{B}_{res}

 \tilde{x} [cm]

L_Outlook

 \rightarrow small or almost none amount of multipole components problem: this kind of multipole expansion lacks 3rd dimension $B^{\theta}\vec{e}_{\theta}$ is just a projection 3d \rightarrow 2d