Joschka F. Wagner

St. Michael, Austria - HIC for FAIR Workshop IAP Goethe Universität Frankfurt AG Ratzinger - NNP

28.02.2014

Outline

2 [Experiments](#page-4-0)

- [Setup](#page-4-0)
- **[Momentum-Filter](#page-5-0)**
- **[Beam Diagnosis](#page-9-0)**
- 3 [Theory & Simulations](#page-14-0)
	- [Closed Orbit Studies](#page-15-0)
	- [Field Imperfections & Error Studies](#page-20-0)
	- **[Injection via Adiabatic Compression](#page-28-0)**

4 [Outlook](#page-36-0)

[Motivation](#page-2-0)

Superconducting High Current Ion Storage Ring F8SR

[Motivation](#page-3-0)

Why to build a new and such crooked Storage Ring - Motivation:

- **Fusion reactivity studies in a High Current Mode such as** $\mathsf{p}\ + {}^{11}\mathsf{B} \rightarrow$ 3 ${}^4\mathsf{He}\ +\ 8.7$ MeV
- multiple beam & particlespecies experiments in Collider Mode down to center of mass collision energies of $100 \,\mathrm{eV}$
- **s** space charge compensation by magnetic surface bounded secondary electrons
- **n** multi ionisation of light atoms by an intense proton beam
- **beam** plasma interaction
- coulomb screening effects

L [Experiments](#page-4-0)

 $\mathsf{\mathsf{L}}$ [Setup](#page-4-0)

F8SR Experiments - Setup

Two 30 $^{\circ}$ Toroids, $B_{\text{max}} = 0.6$ T Two refurbished injectors, each with:

- **terminal,** $U_{\text{max}} = 20 \text{ kV}$
- volume source, $I \approx 3.4 \text{ mA}$ hydrogen mix, max 50% protons
- **Firm** faraday-cup + solenoid, $B_{\text{max}} = 0.72$ T

 $L_{\text{Experiments}}$

 L Momentum-Filter

Momentum-Filter

L [Experiments](#page-6-0)

[Momentum-Filter](#page-6-0)

F8SR Experiments - Momentum-Filter

Master Thesis - Heiko Niebuhr:

Design and construction of a magnetic Momentum-Filter for different hydrogen species $(\mathsf{H}^+,\mathsf{H}_2^+,\mathsf{H}_3^+)$

 $L_{\text{Experiments}}$ $L_{\text{Experiments}}$ $L_{\text{Experiments}}$

L[Momentum-Filter](#page-7-0)

F8SR Experiments - Momentum Filter

Simulations of hydrogen species H^+, H_2^+ , H_3^+ with LINTRA

Measurements: beam current in Faraday-Cups FDT1: in front of solenoid FDT2: behind filter-aperture

filterchannel: grounded via amp`eremeter, I ∼ losses

 $L_{\text{Experiments}}$ $L_{\text{Experiments}}$ $L_{\text{Experiments}}$

[Momentum-Filter](#page-8-0)

F8SR Experiments - Injection

Injection simulations to determine air-core-coil parameters done (sim.-code segments). $B = 0.2 - 0.3$ T Coil-design and construction is upcoming.

 $L_{\text{Experiments}}$

 $L_{\text{Beam Diagnosis}}$

Beam Diagnosis

L [Experiments](#page-10-0)

 \Box [Beam Diagnosis](#page-10-0)

F8SR Experiments - Diagnosis

Master-Thesis Adem Ates: Non invasiv beam diagnosis via residual gas monitor in high magnetic fields

n movable ring of azimutal photodiodes for visible light

L[Experiments](#page-11-0)

L[Beam Diagnosis](#page-11-0)

F8SR Experiments - Diagnosis

construction of a rapid recording electronics is done

- 20bit , 256 channels, direct current input & Analog-to-digital converter
- available capacitors: 3pF; 12,5pF; 25pF; 37,5pF ; up to 150pC **COLOR**
- integration times: $160 \mu s 1 s$
- input currents: $fAs \mu As$
- continous measurement via two way input channel

DDC264FVM

L [Experiments](#page-12-0)

L-[Beam Diagnosis](#page-12-0)

F8SR Experiments - Diagnosis

Testing setup:

- extraction voltage: $6.5 \,\mathrm{kV}$
- beam current: 1 mA
- solenoid field: 0.33 T
- **residual gas pressure:** 10^{-5} mbar nitrogen

L[Experiments](#page-13-0)

L[Beam Diagnosis](#page-13-0)

F8SR Experiments - Diagnosis

- measurement of a He-beam
- comparision with an invasive phosphor screen

setting up a full diagnosis software with a algorithmical back transformation beam monitoring is the next step

-Theory & Simulations

Theory & Simulations

Theory & Simulations

- Theory & Simulations

Closed Orbit Studies

Closed Orbit Studies

Traditional Rings, focussing & corrections \rightarrow Dipole, Quadrupoles

L[Theory & Simulations](#page-16-0)

L[Closed Orbit Studies](#page-16-0)

Complex magnetic field geometry inhibits traditional transport description via matrices & fixpoints

 \rightarrow find analogous description to interlink In magnetic coordinates (Boozercoordinates) ψ , θ , ξ \rightarrow canonical variables for Drift-Hamiltonian: \mathbf{r}

$$
\theta, P_{\theta} = \frac{q\psi}{2\pi}
$$

\n
$$
\xi, P_{\xi} = \frac{\mu_0 G}{2\pi |B|} m v_{\parallel} - t \frac{q\psi}{2\pi}
$$

\n
$$
H = \frac{1}{2m} \frac{(P_{\xi} + tP_{\theta})^2 (2\pi)^2 |B|^2}{\mu_0^2 G^2 m^2} + \mu |B| + q\phi
$$

L[Theory & Simulations](#page-17-0)

L[Closed Orbit Studies](#page-17-0)

For stable orbits the canonical variables must obey;

$$
\frac{dP_{\theta}}{dt} = 0
$$

$$
\frac{d\theta}{dt} = 0
$$

$$
\frac{dP_{\theta}}{dt} = -\left[q\frac{\partial\phi}{\partial\theta} + \left(\mu + \frac{mv_{\parallel}^2}{|\vec{B}|}\right)\frac{\partial|\vec{B}|}{\partial\theta}\right]
$$

$$
\frac{d\theta}{dt} = \frac{2\pi}{q}\left[q\frac{\partial\phi}{\partial\psi} + \left(\mu + \frac{mv_{\parallel}^2}{|\vec{B}|}\right)\frac{\partial|\vec{B}|}{\partial\psi}\right] + t\frac{d\xi}{dt}
$$

- **Fixpoint studies with multipole expansion within the fieldmap** are ongoing
- **n** conventional 2d multipole expansion investigations do not satisfy the complex field geometry

 $\begin{array}{l}\n\rule{0pt}{2.5ex}\quad \text{L Theory &\text{Simulations} \\
\rule{0pt}{2.5ex}\quad \rule{0pt}{2$

-Theory & Simulations

Field Imperfections & Error Studies

-Theory & Simulations

LField Imperfections & Error Studies

Construction always has coil missalignment \rightarrow interfering multipole fields

L [Theory & Simulations](#page-21-0)

[Field Imperfections & Error Studies](#page-21-0)

Since \vec{B} has components: $B_{\psi} = 0$, B_{ξ} , B_{θ} Superposing a **poloidal** (B_{θ}) and **multipole** field. What do we get?

[Theory & Simulations](#page-22-0)

[Field Imperfections & Error Studies](#page-22-0)

$$
\vec{B}=\vec{B}_{\theta}+\vec{B}_{\text{quad}}
$$

$$
\vec{B}_{\theta} = \hat{B}_{\theta} \left(\begin{array}{c} -\sin \theta \\ \cos \theta \end{array} \right) \, \vec{B}_{\text{quad}} = \tfrac{\hat{B}_{\text{q}} r}{a} \left(\begin{array}{c} \sin \theta \\ \cos \theta \end{array} \right)
$$

One obtains points with $|B| = 0 \rightarrow$ analytically solvable:

superposed quadrupole:
\n
$$
\left\{\theta = \frac{\pi}{2}, r = \frac{\hat{B}_{\theta}}{\hat{B}_{q}}a\right\}; \left\{\theta = \frac{3\pi}{2}, r = \frac{\hat{B}_{\theta}}{\hat{B}_{q}}a\right\}
$$

$$
\left\{\theta=\tfrac{\pi}{3}\;,\;\;r=\sqrt{\tfrac{\hat{B}_\theta}{\hat{B}_q}}a\right\};\left\{\theta=\pi\;,\;\;r=\sqrt{\tfrac{\hat{B}_\theta}{\hat{B}_q}}a\right\};\left\{\theta=\tfrac{5\pi}{3}\;,\;\;r=\sqrt{\tfrac{\hat{B}_\theta}{\hat{B}_q}}a\right\}
$$

[Theory & Simulations](#page-23-0)

[Field Imperfections & Error Studies](#page-23-0)

 p oloidal $+$ quadrupole \rightarrow Quadrupoles around $|B| = 0$ Poloidal around center area

p oloidal $+$ sextupole

Influence on particle transport?

-Theory & Simulations

- Theory & Simulations

[Theory & Simulations](#page-26-0)

- \rightarrow certain aperture at a specific slice
- \rightarrow dynamic aperture along the ring axis
- Acceptance of the confinement area is reduced
- \rightarrow areas of particle loss

-Theory & Simulations

Injection via Adiabatic Compression

Injection via Adiabatic Compression

L[Theory & Simulations](#page-28-0)

[Injection via Adiabatic Compression](#page-28-0)

Injection via Adiabatic Compression

[Theory & Simulations](#page-29-0)

[Injection via Adiabatic Compression](#page-29-0)

Injection via Adiabatic Compression

 \blacksquare the facing problem is a smooth field transition

magnetic moment $\mu = \frac{mv_{\perp}^2}{2B}$ must be constant \rightarrow adiabatic invariant

[Theory & Simulations](#page-30-0)

[Injection via Adiabatic Compression](#page-30-0)

Injection via Adiabatic Compression

due to the gradient $\frac{\Delta B}{\Delta s}\to B({\sf x},{\sf y},{\sf z})\to B(\xi)$

[Theory & Simulations](#page-31-0)

[Injection via Adiabatic Compression](#page-31-0)

Injection via Adiabatic Compression

drift velocity coming from $R \times B$ drift

 $v_x = \frac{mv_{\parallel}^2}{aB(\epsilon)}$ qB(ξ)R $v_x \stackrel{!}{=}$ const. \rightarrow $B(\xi)\cdot R(\xi)\stackrel{!}{=}$ const. $B(\xi) = a_1 \cdot \xi$ $R(\xi) = a_2 \cdot \frac{1}{\xi}$ ξ

hyperbolic spiral transport channel

-Theory & Simulations

Linjection via Adiabatic Compression

Injection via Adiabatic Compression

Single particle simulations, $\vec{v} = \vec{v}_x + \vec{v}_{\parallel}$

-Theory & Simulations

Injection via Adiabatic Compression

Injection via Adiabatic Compression

L[Theory & Simulations](#page-34-0)

[Injection via Adiabatic Compression](#page-34-0)

Injection via Adiabatic Compression

Another possible solution to compensate the drift is by adding a dipole component

> $x(\theta) = R \cos(\theta)$ $v(\theta) = R \sin(\theta)$ $z(\theta) = \frac{h\theta}{2\pi} + \frac{R}{\tan\alpha}\sin(n\theta + \varphi_0)$

[S.Sheehy,BeamDynamicsMeetsMagnets 2013]

 \rightarrow to be investigated

L_{Outlook} L_{Outlook} L_{Outlook}

Outlook

- **EXCOMM** commissioning of the injection experiment when the coil is ready
- design of the adiabatic injection section for the latest F8SR type
- high current beam transport simulations
- ■ target fusion cross section simulations

 L Outlook

Thank you for listening!

 L_{Outlook} L_{Outlook} L_{Outlook}

Fixpoints & Multipole expansion

Choose a certain point as a possible fixpoint \rightarrow interpolate the field at points on concentric circles $\vec{B}_{\sf res} = \vec{B}_\perp - \vec{B}_{\perp,0}$ where $\vec{B}_{\perp} = B^{\theta} \vec{\mathsf{e}}_{\theta}$ \rightarrow start multipole expansion

$$
C_n = \frac{1}{Mr_0^{n-1}} \sum_{m=1}^{M} (B_y + iB_x)_{m} e^{-i\phi_m(n-1)}
$$

where $n = 1$
 $n = 1$
 2
 3 ...

For a poloidal field
$$
\vec{B} = B \begin{pmatrix} -\sin \theta \\ \cos \theta \end{pmatrix}
$$
 one gets $C_n = 0$ \forall n

L_{Outlook}

Slice of the mesh ("beam tube") black= \vec{B}_{θ} component blue: \vec{B}_{res}

L_{Outlook}

 \tilde{x} [cm]

L
[Outlook](#page-40-0)

 \rightarrow small or almost none amount of multipole components problem: this kind of multipole expansion lacks 3rd dimension $B^\theta \vec{\mathrm{e}}_\theta$ is just a projection 3d \to 2d